Few-body analogue quantum simulation with Rydberg-dressed atoms in
optical lattices
- URL: http://arxiv.org/abs/2211.15708v1
- Date: Mon, 28 Nov 2022 19:00:21 GMT
- Title: Few-body analogue quantum simulation with Rydberg-dressed atoms in
optical lattices
- Authors: Daniel Malz and J. Ignacio Cirac
- Abstract summary: We investigate the possibility of realizing problems akin to those found in quantum chemistry.
We show that simple pseudo-atoms and -molecules could be prepared with high fidelity in state-of-the-art experiments.
- Score: 0.913755431537592
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Most experiments with ultracold atoms in optical lattices have contact
interactions, and therefore operate at high densities of around one atom per
site to observe the effect of strong interactions. Strong ranged interactions
can be generated via Rydberg dressing, which opens the path to explore the
physics of few interacting particles. Rather than the unit cells of a crystal,
the sites of the optical lattice can now be interpreted as discretized space.
This allows studying completely new types of problems in a familiar
architecture. We investigate the possibility of realizing problems akin to
those found in quantum chemistry, although with a different scaling law in the
interactions. Through numerical simulation, we show that simple pseudo-atoms
and -molecules could be prepared with high fidelity in state-of-the-art
experiments.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Laser-painted cavity-mediated interactions in a quantum gas [0.0]
Experimental platforms based on ultracold atomic gases have significantly advanced the quantum simulation of complex systems.
Here we propose an experimental scheme employing laser-painted cavity-mediated interactions.
Our approach combines the versatility of cavity quantum electrodynamics with the precision of laser manipulation.
arXiv Detail & Related papers (2024-05-13T06:13:16Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Observation of Feshbach resonances between a single ion and ultracold
atoms [0.0]
Trapped atomic and molecular systems, neutral and charged, are at the forefront of quantum science.
Here we demonstrate Feshbach resonances between ions and atoms, using magnetically tunable interactions between $138$Ba$+$ ions and $6$Li atoms.
arXiv Detail & Related papers (2021-05-19T20:15:17Z) - Experimental decoherence in molecule interferometry [0.0]
Complex molecules are intriguing objects at the interface between quantum and classical phenomena.
They feature a much more complicated internal structure, but can still behave as quantum objects in their center-of-mass motion.
arXiv Detail & Related papers (2021-01-20T17:00:42Z) - Quantum simulation with fully coherent dipole--dipole-interactions
mediated by three-dimensional subwavelength atomic arrays [0.0]
Quantum simulators employing cold atoms are among the most promising approaches to tackle quantum many-body problems.
Here, we propose to use a simple cubic three-dimensional array of atoms to produce an omnidirectional bandgap for light.
We show that it enables coherent, dissipation-free interactions between embedded impurities.
arXiv Detail & Related papers (2020-12-23T16:26:20Z) - Engineering analog quantum chemistry Hamiltonians using cold atoms in
optical lattices [69.50862982117127]
We benchmark the working conditions of the numerically analog simulator and find less demanding experimental setups.
We also provide a deeper understanding of the errors of the simulation appearing due to discretization and finite size effects.
arXiv Detail & Related papers (2020-11-28T11:23:06Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.