Experimental decoherence in molecule interferometry
- URL: http://arxiv.org/abs/2101.08216v1
- Date: Wed, 20 Jan 2021 17:00:42 GMT
- Title: Experimental decoherence in molecule interferometry
- Authors: Markus Arndt, Stefan Gerlich, Klaus Hornberger
- Abstract summary: Complex molecules are intriguing objects at the interface between quantum and classical phenomena.
They feature a much more complicated internal structure, but can still behave as quantum objects in their center-of-mass motion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex molecules are intriguing objects at the interface between quantum and
classical phenomena. Compared to the electrons, neutrons, or atoms studied in
earlier matter-wave experiments, they feature a much more complicated internal
structure, but can still behave as quantum objects in their center-of-mass
motion. Molecules may involve a large number of vibrational modes and highly
excited rotational states, they can emit thermal photons, electrons, or even
atoms, and they exhibit large cross sections for collisional interactions with
residual background gases. This makes them ideal candidates for decoherence
experiments which we review in this contribution.
Related papers
- Long-lived entanglement of molecules in magic-wavelength optical tweezers [41.94295877935867]
We present the first realisation of a microwave-driven entangling gate between two molecules.
We show that the magic-wavelength trap preserves the entanglement, with no measurable decay over 0.5 s.
The extension of precise quantum control to complex molecular systems will allow their additional degrees of freedom to be exploited across many domains of quantum science.
arXiv Detail & Related papers (2024-08-27T09:28:56Z) - Entangled Matter-waves for Quantum Enhanced Sensing [0.0]
We present a method for creating and controlling entanglement between solely the motional states of atoms in a cavity without the need for electronic interactions.
This system offers a highly tunable, many-body quantum sensor and simulator.
arXiv Detail & Related papers (2024-06-19T15:10:27Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Few-body analogue quantum simulation with Rydberg-dressed atoms in
optical lattices [0.913755431537592]
We investigate the possibility of realizing problems akin to those found in quantum chemistry.
We show that simple pseudo-atoms and -molecules could be prepared with high fidelity in state-of-the-art experiments.
arXiv Detail & Related papers (2022-11-28T19:00:21Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Motional Quantum States of Surface Electrons on Liquid Helium in a
Tilted Magnetic Field [0.0]
electrons on helium realize a atomic system where interaction between components can be engineered and controlled by simple means and with high accuracy.
Our work introduces a pure condensed-matter system of electrons on helium into the context of atomic, molecular and optical physics.
arXiv Detail & Related papers (2020-11-10T08:25:17Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z) - Quantum optics with giant atoms -- the first five years [0.0]
In quantum optics, it is common to assume atoms can be approximated as point-like compared to the wavelength of the light they interact with.
Recent advances in experiments with artificial atoms built from superconducting circuits have shown that this assumption can be violated.
arXiv Detail & Related papers (2019-12-30T17:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.