論文の概要: Edge Video Analytics: A Survey on Applications, Systems and Enabling
Techniques
- arxiv url: http://arxiv.org/abs/2211.15751v3
- Date: Wed, 11 Oct 2023 15:13:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-13 15:36:37.032224
- Title: Edge Video Analytics: A Survey on Applications, Systems and Enabling
Techniques
- Title(参考訳): Edge Video Analytics: アプリケーション、システム、実装技術に関する調査
- Authors: Renjie Xu, Saiedeh Razavi and Rong Zheng
- Abstract要約: ビデオは、デジタル情報のグローバルな爆発の鍵を握る。
政府や企業は、さまざまなアプリケーションのために無数のカメラをデプロイしている。
インターネットに接続されたデバイスの普及に伴い、大量のデータが毎日生成され、クラウドを圧倒する。
ワークロードとサービスをネットワークコアからネットワークエッジに移行する、新たなパラダイムであるエッジコンピューティングは、有望なソリューションとして広く認識されている。
- 参考スコア(独自算出の注目度): 3.9134031118910264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video, as a key driver in the global explosion of digital information, can
create tremendous benefits for human society. Governments and enterprises are
deploying innumerable cameras for a variety of applications, e.g., law
enforcement, emergency management, traffic control, and security surveillance,
all facilitated by video analytics (VA). This trend is spurred by the rapid
advancement of deep learning (DL), which enables more precise models for object
classification, detection, and tracking. Meanwhile, with the proliferation of
Internet-connected devices, massive amounts of data are generated daily,
overwhelming the cloud. Edge computing, an emerging paradigm that moves
workloads and services from the network core to the network edge, has been
widely recognized as a promising solution. The resulting new intersection, edge
video analytics (EVA), begins to attract widespread attention. Nevertheless,
only a few loosely-related surveys exist on this topic. The basic concepts of
EVA (e.g., definition, architectures) were not fully elucidated due to the
rapid development of this domain. To fill these gaps, we provide a
comprehensive survey of the recent efforts on EVA. In this paper, we first
review the fundamentals of edge computing, followed by an overview of VA. EVA
systems and their enabling techniques are discussed next. In addition, we
introduce prevalent frameworks and datasets to aid future researchers in the
development of EVA systems. Finally, we discuss existing challenges and foresee
future research directions. We believe this survey will help readers comprehend
the relationship between VA and edge computing, and spark new ideas on EVA.
- Abstract(参考訳): ビデオは、デジタル情報のグローバルな爆発の鍵を握る存在であり、人間社会に多大な利益をもたらす。
政府や企業は、例えば、警察、緊急管理、交通制御、セキュリティ監視など、様々な用途に無数のカメラを配備しており、いずれもビデオ分析(VA)によって促進されている。
この傾向は、オブジェクト分類、検出、追跡のためのより正確なモデルを可能にするディープラーニング(DL)の急速な進歩によって引き起こされる。
一方、インターネットに接続されたデバイスの普及に伴い、大量のデータが毎日生成され、クラウドを圧倒する。
ワークロードとサービスをネットワークコアからネットワークエッジに移行する、新たなパラダイムであるエッジコンピューティングは、有望なソリューションとして広く認識されている。
新たな交差点であるedge video analytics(eva)は、広く注目を集め始めている。
それにもかかわらず、この話題に関する調査はごくわずかである。
EVAの基本概念(定義、アーキテクチャなど)はこの領域の急速な発展のために完全には解明されなかった。
これらのギャップを埋めるために、EVAに関する最近の取り組みを包括的に調査する。
本稿では,まずエッジコンピューティングの基礎を概観し,続いてvaの概要について述べる。
次にEVAシステムとその実現技術について述べる。
さらに,EVAシステムの開発において,今後の研究者を支援するためのフレームワークやデータセットも紹介する。
最後に,既存の課題と今後の研究方向性について考察する。
この調査は、読者がVAとエッジコンピューティングの関係を理解し、EVAに関する新しいアイデアを喚起するのに役立ちます。
関連論文リスト
- Privacy-Preserving Video Anomaly Detection: A Survey [10.899433437231139]
Video Anomaly Detection (VAD)は、オープンスペースから収集された監視ビデオのパターンを自動的に分析し、物理的接触なしに損傷を引き起こす可能性のある異常事象を検出することを目的としている。
ビデオ伝送と使用における透明性の欠如は、プライバシーと倫理に関する一般の懸念を高め、VADの現実世界の応用を制限する。
近年,データ,特徴,システムなど,さまざまな観点から体系的な研究を行うことによって,VADのプライバシーに関する懸念に焦点が当てられている。
本稿は、P2VADの進歩を初めて体系的にレビューし、その範囲を定義し、直感的な分類法を提供する。
論文 参考訳(メタデータ) (2024-11-21T20:29:59Z) - A Comprehensive Survey on Underwater Image Enhancement Based on Deep Learning [51.7818820745221]
水中画像強調(UIE)はコンピュータビジョン研究において重要な課題である。
多数のUIEアルゴリズムが開発されているにもかかわらず、網羅的で体系的なレビューはいまだに欠落している。
論文 参考訳(メタデータ) (2024-05-30T04:46:40Z) - Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Edge AI for Internet of Energy: Challenges and Perspectives [5.267662071764103]
The Digital landscape of the Internet of Energy (IoE) is on thebrink of a revolution transformation with the integration of edge Artificial Intelligence (AI)
この包括的なレビューは、エッジAIがIoEエコシステムを再構築する可能性と可能性を解明するものだ。
論文 参考訳(メタデータ) (2023-11-28T15:01:56Z) - A Comprehensive Survey on Edge Data Integrity Verification: Fundamentals and Future Trends [43.174689394432804]
我々は、現在の研究状況、オープンな問題、そして潜在的に有望な洞察を読者に示し、この未調査分野をさらに調査する。
先行研究を徹底的に評価するために,有効な検証手法が満たすべき普遍的基準フレームワークを合成する。
我々は、将来の仕事における興味深い研究課題と可能な方向性を強調し、今後の技術、例えば機械学習とコンテキスト認識セキュリティがECのセキュリティをいかに強化できるかについて議論する。
論文 参考訳(メタデータ) (2022-10-20T02:58:36Z) - Delving into the Devils of Bird's-eye-view Perception: A Review,
Evaluation and Recipe [115.31507979199564]
鳥眼視(BEV)における知覚タスクの強力な表現の学習は、産業と学界の両方から注目されつつある。
センサーの構成が複雑化するにつれて、異なるセンサーからの複数のソース情報の統合と、統一されたビューにおける特徴の表現が重要になる。
BEV知覚の中核的な問題は、(a)視点からBEVへの視点変換を通して失われた3D情報を再構成する方法、(b)BEVグリッドにおける基底真理アノテーションの取得方法、(d)センサー構成が異なるシナリオでアルゴリズムを適応・一般化する方法にある。
論文 参考訳(メタデータ) (2022-09-12T15:29:13Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
このレビューは、現在利用可能な機械学習とデータ分析のための最先端ライブラリとフレームワークに関する包括的なビジョンを提供することを目的としている。
現在利用可能なEdge-to-Cloud Continuumに関する実験的な研究のための、主要なシミュレーション、エミュレーション、デプロイメントシステム、テストベッドも調査されている。
論文 参考訳(メタデータ) (2022-04-29T08:06:05Z) - Edge-Cloud Polarization and Collaboration: A Comprehensive Survey [61.05059817550049]
クラウドとエッジ両方のAIの体系的なレビューを行います。
私たちはクラウドとエッジモデリングの協調学習メカニズムを最初にセットアップしました。
我々は現在進行中の最先端AIトピックの可能性と実践経験について議論する。
論文 参考訳(メタデータ) (2021-11-11T05:58:23Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。