論文の概要: Edge AI for Internet of Energy: Challenges and Perspectives
- arxiv url: http://arxiv.org/abs/2311.16851v1
- Date: Tue, 28 Nov 2023 15:01:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-29 18:08:05.179999
- Title: Edge AI for Internet of Energy: Challenges and Perspectives
- Title(参考訳): エネルギーのインターネットのためのエッジAI:課題と展望
- Authors: Yassine Himeur, Aya Nabil Sayed, Abdullah Alsalemi, Faycal Bensaali
and Abbes Amira
- Abstract要約: The Digital landscape of the Internet of Energy (IoE) is on thebrink of a revolution transformation with the integration of edge Artificial Intelligence (AI)
この包括的なレビューは、エッジAIがIoEエコシステムを再構築する可能性と可能性を解明するものだ。
- 参考スコア(独自算出の注目度): 5.267662071764103
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The digital landscape of the Internet of Energy (IoE) is on the brink of a
revolutionary transformation with the integration of edge Artificial
Intelligence (AI). This comprehensive review elucidates the promise and
potential that edge AI holds for reshaping the IoE ecosystem. Commencing with a
meticulously curated research methodology, the article delves into the myriad
of edge AI techniques specifically tailored for IoE. The myriad benefits,
spanning from reduced latency and real-time analytics to the pivotal aspects of
information security, scalability, and cost-efficiency, underscore the
indispensability of edge AI in modern IoE frameworks. As the narrative
progresses, readers are acquainted with pragmatic applications and techniques,
highlighting on-device computation, secure private inference methods, and the
avant-garde paradigms of AI training on the edge. A critical analysis follows,
offering a deep dive into the present challenges including security concerns,
computational hurdles, and standardization issues. However, as the horizon of
technology ever expands, the review culminates in a forward-looking
perspective, envisaging the future symbiosis of 5G networks, federated edge AI,
deep reinforcement learning, and more, painting a vibrant panorama of what the
future beholds. For anyone vested in the domains of IoE and AI, this review
offers both a foundation and a visionary lens, bridging the present realities
with future possibilities.
- Abstract(参考訳): Internet of Energy(IoE)のデジタルランドスケープは、エッジ人工知能(AI)の統合による革命的な変革の波に乗っている。
この包括的なレビューは、エッジAIがIoEエコシステムを再構築する可能性と可能性を解明している。
厳密にキュレートされた研究手法を取り入れたこの記事は、IoEに特化された、最先端のAIテクニックの無数の部分を掘り下げている。
レイテンシの低減とリアルタイム分析から,情報セキュリティやスケーラビリティ,コスト効率といった重要な面まで,数多くのメリットが,現代のIoEフレームワークにおけるエッジAIの欠如を浮き彫りにしている。
物語が進むにつれて、読者は実用的なアプリケーションやテクニック、オンデバイス計算、セキュアなプライベート推論メソッド、エッジでのaiトレーニングの前衛的なパラダイムに精通している。
セキュリティ上の懸念、計算上のハードル、標準化の問題など、現在の課題を深く掘り下げる上で、批判的な分析が続く。
しかし、テクノロジーの地平が広がるにつれ、レビューは先見的な視点で頂点に達し、5Gネットワークの将来的な共生、フェデレーションされたエッジAI、深層強化学習など、未来が持つものの鮮やかなパノラマを描く。
IoEとAIの分野に特有な人なら、このレビューは基礎と幻想レンズの両方を提供し、現在の現実を将来の可能性で橋渡しする。
関連論文リスト
- Networking Systems for Video Anomaly Detection: A Tutorial and Survey [55.28514053969056]
ビデオ異常検出(VAD)は人工知能(AI)コミュニティにおける基本的な研究課題である。
本稿では,各種深層学習駆動型VAD経路の基本前提,学習フレームワーク,適用シナリオについて述べる。
我々は、産業用IoTおよびスマート都市における最新のNSVAD研究と、デプロイ可能なNSVADのためのエンドクラウド共同アーキテクチャを紹介します。
論文 参考訳(メタデータ) (2024-05-16T02:00:44Z) - Artificial General Intelligence (AGI)-Native Wireless Systems: A Journey Beyond 6G [58.440115433585824]
デジタルツイン(DT)のようなサービスをサポートする将来の無線システムの構築は、メタサーフェスのような従来の技術への進歩を通じて達成することが困難である。
人工知能(AI)ネイティブネットワークは、無線技術のいくつかの制限を克服することを約束する一方で、開発は依然としてニューラルネットワークのようなAIツールに依存している。
本稿では、AIネイティブ無線システムの概念を再考し、それらを人工知能(AGI)ネイティブシステムに変換するために必要な共通感覚を取り入れた。
論文 参考訳(メタデータ) (2024-04-29T04:51:05Z) - A call for embodied AI [1.7544885995294304]
我々は、人工知能の次の基本ステップとして、エンボディードAIを提案する。
Embodied AIの範囲を広げることで、認知アーキテクチャに基づく理論的枠組みを導入する。
このフレームワークはFristonのアクティブな推論原則と一致しており、EAI開発に対する包括的なアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-06T09:11:20Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
生成人工知能(AI)の現状と今後の動向について批判的考察
GoogleのGeminiや、予想されるOpenAI Q*プロジェクトといったイノベーションが、さまざまなドメインにわたる研究の優先順位とアプリケーションをどう変えているのかを調査した。
この研究は、倫理的および人間中心の手法をAI開発に取り入れることの重要性を強調し、社会規範と福祉の整合性を確保した。
論文 参考訳(メタデータ) (2023-12-18T01:11:39Z) - Green Edge AI: A Contemporary Survey [46.11332733210337]
AIの変換力は、ディープニューラルネットワーク(DNN)の利用から導かれる。
ディープラーニング(DL)は、エンドユーザーデバイス(EUD)に近い無線エッジネットワークに移行しつつある。
その可能性にもかかわらず、エッジAIは大きな課題に直面している。主な原因は、無線エッジネットワークのリソース制限と、DLのリソース集約的な性質の分離である。
論文 参考訳(メタデータ) (2023-12-01T04:04:37Z) - Predictable Artificial Intelligence [77.1127726638209]
本稿では予測可能なAIのアイデアと課題を紹介する。
それは、現在および将来のAIエコシステムの重要な妥当性指標を予測できる方法を探る。
予測可能性を達成することは、AIエコシステムの信頼、責任、コントロール、アライメント、安全性を促進するために不可欠である、と私たちは主張する。
論文 参考訳(メタデータ) (2023-10-09T21:36:21Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
人工知能(Artificial General Intelligence, AGI)は、人間の認知能力でタスクを理解し、学習し、実行することができる能力を持つ。
本研究は,モノのインターネットにおけるAGIの実現に向けた機会と課題を探究する。
AGIに注入されたIoTの応用スペクトルは広く、スマートグリッド、住宅環境、製造、輸送から環境モニタリング、農業、医療、教育まで幅広い領域をカバーしている。
論文 参考訳(メタデータ) (2023-09-14T05:43:36Z) - Roadmap for Edge AI: A Dagstuhl Perspective [7.871316017033928]
Edge AIは、データ駆動アプリケーションへの適応を提供し、ネットワークと無線アクセスを強化し、分散AI/MLパイプラインの作成、最適化、デプロイを可能にします。
目標は、主要なアクターとイネーブラーをまとめてEdge AIのドメインをさらに前進させる、計画されたロードマップを共有することだ。
論文 参考訳(メタデータ) (2021-11-27T16:48:20Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
AIがIoTをより速く、より賢く、よりグリーンで、より安全にするための力を与える方法を示します。
まず、認識、学習、推論、行動の4つの視点から、IoTのためのAI研究の進歩を示す。
最後に、私たちの世界を深く再形成する可能性が高いAIoTの有望な応用をいくつかまとめる。
論文 参考訳(メタデータ) (2020-11-17T13:14:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。