論文の概要: PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
- arxiv url: http://arxiv.org/abs/2211.15759v2
- Date: Wed, 26 Apr 2023 18:01:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-28 16:54:35.172449
- Title: PIDS: Joint Point Interaction-Dimension Search for 3D Point Cloud
- Title(参考訳): pids: 3次元点雲のコネクテッドポイントインタラクション・ディメンション探索
- Authors: Tunhou Zhang, Mingyuan Ma, Feng Yan, Hai Li, Yiran Chen
- Abstract要約: PIDSは、ポイントクラウドデータにセマンティックセグメンテーションを提供するために、ポイントインタラクションとポイントディメンションを共同で探求する新しいパラダイムである。
我々は多目的点相互作用と点次元を共同で検討する大規模な探索空間を確立する。
予測器をベースとしたニューラルアーキテクチャサーチ(NAS)を活用することにより,探索空間の探索を改善するとともに,予測の質を向上させる。
- 参考スコア(独自算出の注目度): 36.55716011085907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The interaction and dimension of points are two important axes in designing
point operators to serve hierarchical 3D models. Yet, these two axes are
heterogeneous and challenging to fully explore. Existing works craft point
operator under a single axis and reuse the crafted operator in all parts of 3D
models. This overlooks the opportunity to better combine point interactions and
dimensions by exploiting varying geometry/density of 3D point clouds. In this
work, we establish PIDS, a novel paradigm to jointly explore point interactions
and point dimensions to serve semantic segmentation on point cloud data. We
establish a large search space to jointly consider versatile point interactions
and point dimensions. This supports point operators with various
geometry/density considerations. The enlarged search space with heterogeneous
search components calls for a better ranking of candidate models. To achieve
this, we improve the search space exploration by leveraging predictor-based
Neural Architecture Search (NAS), and enhance the quality of prediction by
assigning unique encoding to heterogeneous search components based on their
priors. We thoroughly evaluate the networks crafted by PIDS on two semantic
segmentation benchmarks, showing ~1% mIOU improvement on SemanticKITTI and
S3DIS over state-of-the-art 3D models.
- Abstract(参考訳): 点の相互作用と次元は、階層的3dモデルを提供する点作用素を設計する上で重要な軸である。
しかし、この2つの軸は異質であり、完全な探査は困難である。
既存のワークスクラフトポイント演算子を1軸下に置き、3Dモデルのすべての部分でクラフトスクラフト演算子を再利用する。
これは、3次元点雲の様々な幾何学的・密度を活用し、点相互作用と次元をより良く結合する機会を見下ろす。
本研究では,点間相互作用と点次元を共同で探索し,点クラウドデータのセマンティックセグメンテーションを提供する新しいパラダイムであるPIDSを確立する。
我々は多目的点相互作用と点次元を共同で検討する大規模な探索空間を確立する。
これは様々な幾何学・密度を考慮した点演算子をサポートする。
ヘテロジニアスな検索コンポーネントを持つ拡張された検索空間は、候補モデルのより優れたランキングを求める。
そこで我々は,予測器をベースとしたニューラルアーキテクチャ探索(NAS)を活用して探索空間の探索を改良し,それ以前の特徴に基づいて,一意のエンコーディングを異種検索コンポーネントに割り当てることで予測品質を向上させる。
本研究では,2つのセマンティックセグメンテーション・ベンチマークを用いてPIDSが作成したネットワークを徹底的に評価し,SemanticKITTIとS3DISの3Dモデルに対して約1%のmIOU改善を示した。
関連論文リスト
- ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPointは、グローバルな自由境界面パラメータ化を実現するための教師なしのニューラルネットワークパイプラインである。
この研究は、グローバルマッピングと自由境界の両方を追求するニューラルポイントクラウドパラメータ化を調査する最初の試みである。
論文 参考訳(メタデータ) (2024-03-15T14:35:05Z) - PointHPS: Cascaded 3D Human Pose and Shape Estimation from Point Clouds [99.60575439926963]
本稿では,実環境で捉えた点雲から正確な3次元HPSを実現するための基本的フレームワークであるPointHPSを提案する。
PointHPSは、カスケードアーキテクチャを通じてポイント機能を反復的に洗練する。
広範囲な実験により、ポイントHPSは強力な特徴抽出と処理方式を持ち、State-of-the-Art法より優れていることが示された。
論文 参考訳(メタデータ) (2023-08-28T11:10:14Z) - Background-Aware 3D Point Cloud Segmentationwith Dynamic Point Feature
Aggregation [12.093182949686781]
DPFA-Net(Dynamic Point Feature Aggregation Network)と呼ばれる新しい3Dポイント・クラウド・ラーニング・ネットワークを提案する。
DPFA-Netにはセマンティックセグメンテーションと3Dポイントクラウドの分類のための2つのバリエーションがある。
S3DISデータセットのセマンティックセグメンテーションのための、最先端の全体的な精度スコアを達成する。
論文 参考訳(メタデータ) (2021-11-14T05:46:05Z) - Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR-based
Perception [122.53774221136193]
運転時のLiDARに基づく認識のための最先端の手法は、しばしば点雲を2D空間に投影し、2D畳み込みによって処理する。
自然な対策として、3Dボクセル化と3D畳み込みネットワークを利用する方法がある。
本研究では,3次元幾何学的パターンを探索するために,円筒状分割と非対称な3次元畳み込みネットワークを設計する,屋外LiDARセグメンテーションのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-12T06:25:11Z) - Similarity-Aware Fusion Network for 3D Semantic Segmentation [87.51314162700315]
本研究では,3次元セマンティックセグメンテーションのための2次元画像と3次元点雲を適応的に融合する類似性認識融合ネットワーク(SAFNet)を提案する。
我々は、入力とバックプロジェクションされた(2Dピクセルから)点雲の間の幾何学的および文脈的類似性を初めて学習する、後期融合戦略を採用している。
SAFNetは、様々なデータ完全性にまたがって、既存の最先端の核融合ベースのアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2021-07-04T09:28:18Z) - Segmenting 3D Hybrid Scenes via Zero-Shot Learning [13.161136148641813]
この研究は、ゼロショット学習の枠組みの下で、3Dハイブリッドシーンのポイントクラウドセマンティックセマンティックセマンティクスの問題に取り組むことを目的としている。
本稿では、PFNetと呼ばれる、オブジェクトの様々なクラスに対するポイント特徴を、見えていないクラスと見えないクラスの両方のセマンティック特徴を利用して合成するネットワークを提案する。
提案したPFNet は点特徴を合成するために GAN アーキテクチャを用いており、新しい意味正規化器を適用することにより、目に見えるクラスと目に見えないクラスの特徴のセマンティックな関係が統合される。
本研究では,S3DISデータセットとScanNetデータセットを6つの異なるデータ分割で再編成し,アルゴリズム評価のための2つのベンチマークを提案する。
論文 参考訳(メタデータ) (2021-07-01T13:21:49Z) - Semantic Segmentation for Real Point Cloud Scenes via Bilateral
Augmentation and Adaptive Fusion [38.05362492645094]
現実世界の複雑な環境を直感的に捉えることができますが、3Dデータの生の性質のため、機械認識にとって非常に困難です。
我々は、現実に収集された大規模クラウドデータに対して、重要な視覚的タスク、セマンティックセグメンテーションに集中する。
3つのベンチマークで最先端のネットワークと比較することにより,ネットワークの有効性を実証する。
論文 参考訳(メタデータ) (2021-03-12T04:13:20Z) - Improving Point Cloud Semantic Segmentation by Learning 3D Object
Detection [102.62963605429508]
ポイントクラウドセマンティックセグメンテーションは、自動運転において重要な役割を果たす。
現在の3Dセマンティックセグメンテーションネットワークは、よく表現されたクラスに対して優れた性能を発揮する畳み込みアーキテクチャに焦点を当てている。
Aware 3D Semantic Detection (DASS) フレームワークを提案する。
論文 参考訳(メタデータ) (2020-09-22T14:17:40Z) - Cross-Modality 3D Object Detection [63.29935886648709]
本稿では,3次元物体検出のための新しい2段階多モード融合ネットワークを提案する。
アーキテクチャ全体が2段階の融合を促進する。
KITTIデータセットを用いた実験により,提案したマルチステージ融合により,ネットワークがより良い表現を学習できることが示唆された。
論文 参考訳(メタデータ) (2020-08-16T11:01:20Z) - Pointwise Attention-Based Atrous Convolutional Neural Networks [15.499267533387039]
多数の点を効率的に扱うために,注目度に基づくアトラス畳み込みニューラルネットワークアーキテクチャを提案する。
提案モデルは,3次元セマンティックセグメンテーションタスクにおいて,最も重要な2つの3Dポイントクラウドデータセット上で評価されている。
精度の面では最先端モデルと比較して妥当な性能を達成し、パラメータの数ははるかに少ない。
論文 参考訳(メタデータ) (2019-12-27T13:12:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。