論文の概要: Decentralized Learning with Multi-Headed Distillation
- arxiv url: http://arxiv.org/abs/2211.15774v1
- Date: Mon, 28 Nov 2022 21:01:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 15:19:42.251008
- Title: Decentralized Learning with Multi-Headed Distillation
- Title(参考訳): マルチヘッド蒸留による分散学習
- Authors: Andrey Zhmoginov and Mark Sandler and Nolan Miller and Gus Kristiansen
and Max Vladymyrov
- Abstract要約: プライベートデータによる分散学習は、機械学習の中心的な問題である。
本研究では, 個別の非IDデータを持つ複数のエージェントが相互に学習できる, 蒸留に基づく分散学習手法を提案する。
- 参考スコア(独自算出の注目度): 12.90857834791378
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized learning with private data is a central problem in machine
learning. We propose a novel distillation-based decentralized learning
technique that allows multiple agents with private non-iid data to learn from
each other, without having to share their data, weights or weight updates. Our
approach is communication efficient, utilizes an unlabeled public dataset and
uses multiple auxiliary heads for each client, greatly improving training
efficiency in the case of heterogeneous data. This approach allows individual
models to preserve and enhance performance on their private tasks while also
dramatically improving their performance on the global aggregated data
distribution. We study the effects of data and model architecture heterogeneity
and the impact of the underlying communication graph topology on learning
efficiency and show that our agents can significantly improve their performance
compared to learning in isolation.
- Abstract(参考訳): プライベートデータによる分散学習は、機械学習の中心的な問題である。
本研究では,非iidデータを持つ複数のエージェントが,データ共有や重み付け,重み付けの更新を必要とせずに相互に学習できる,新たな蒸留型分散学習手法を提案する。
提案手法は通信効率が高く,ラベルのない公開データセットを活用し,クライアント毎に複数の補助ヘッドを使用することで,異種データの場合のトレーニング効率を大幅に向上する。
このアプローチにより、個々のモデルがプライベートタスクのパフォーマンスを保ち、向上すると同時に、グローバル集約されたデータ分散のパフォーマンスを劇的に改善することができる。
我々は,データとモデルアーキテクチャの不均一性と,基礎となる通信グラフトポロジが学習効率に与える影響について検討し,エージェントが単独で学習するよりも性能を著しく向上できることを示す。
関連論文リスト
- Decentralized Personalized Federated Learning [4.5836393132815045]
私たちは、パーソナライズされたモデルのトレーニングに適したコラボレータを選択する際に、各クライアントをガイドするコラボレーショングラフの作成に重点を置いています。
従来の手法とは違って,クライアントの欲求関係を考慮し,より粒度の細かい共同作業者を特定する。
これを実現するために,制約付きアルゴリズムを用いた二段階最適化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-10T17:58:48Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
フェデレートラーニング(Federated Learning)は、分散機械学習の手法である。
我々は,AMSGradの異種局所変種であるFedLALRを提案し,各クライアントが学習率を調整する。
クライアントが指定した自動調整型学習率スケジューリングが,クライアント数に対して収束し,線形高速化を実現することを示す。
論文 参考訳(メタデータ) (2023-09-18T12:35:05Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - Global Update Tracking: A Decentralized Learning Algorithm for
Heterogeneous Data [14.386062807300666]
本稿では,デバイス間のデータ分散の変化の影響を受けにくい分散学習アルゴリズムの設計に焦点をあてる。
我々は,分散学習における異種データの影響を,通信オーバーヘッドを伴わずに緩和することを目的とした,新たなトラッキングベース手法であるGUTを提案する。
提案手法は,既存手法と比較して1~6%の精度向上により,異種データの分散学習における最先端性能を実現する。
論文 参考訳(メタデータ) (2023-05-08T15:48:53Z) - Striving for data-model efficiency: Identifying data externalities on
group performance [75.17591306911015]
信頼できる、効果的で責任ある機械学習システムの構築は、トレーニングデータとモデリング決定の違いが、予測パフォーマンスにどのように影響するかを理解することに集中する。
我々は、特定のタイプのデータモデル非効率性に注目し、一部のソースからトレーニングデータを追加することで、集団の重要なサブグループで評価されるパフォーマンスを実際に低下させることができる。
以上の結果から,データ効率が正確かつ信頼性の高い機械学習の鍵となることが示唆された。
論文 参考訳(メタデータ) (2022-11-11T16:48:27Z) - Federated Pruning: Improving Neural Network Efficiency with Federated
Learning [24.36174705715827]
フェデレーテッド・プルーニング(Federated Pruning)は、フェデレーテッド・セッティングの下で縮小モデルのトレーニングを行う。
異なる刈り取り方式を探索し,提案手法の有効性の実証的証拠を提供する。
論文 参考訳(メタデータ) (2022-09-14T00:48:37Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
局所的な学習とプライベートな集中学習の協調は、総合的に有用であり、精度とプライバシのトレードオフを改善していることを示す。
合成および実世界のデータセットに関する実験により理論的結果について述べる。
論文 参考訳(メタデータ) (2022-02-10T20:44:44Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - Multi-Center Federated Learning [62.57229809407692]
本稿では,フェデレート学習のための新しい多中心集約機構を提案する。
非IIDユーザデータから複数のグローバルモデルを学び、同時にユーザとセンタ間の最適なマッチングを導出する。
ベンチマークデータセットによる実験結果から,本手法はいくつかの一般的なフェデレーション学習法より優れていることが示された。
論文 参考訳(メタデータ) (2020-05-03T09:14:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。