論文の概要: Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting
- arxiv url: http://arxiv.org/abs/2211.15856v4
- Date: Mon, 3 Jun 2024 20:19:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 16:52:40.860200
- Title: Beyond Ensemble Averages: Leveraging Climate Model Ensembles for Subseasonal Forecasting
- Title(参考訳): 平均アンサンブルを超える - サブシーズン予測のための気候モデルアンサンブルの活用
- Authors: Elena Orlova, Haokun Liu, Raphael Rossellini, Benjamin A. Cash, Rebecca Willett,
- Abstract要約: 本研究では,機械学習モデル(ML)を時系列予測のための後処理ツールとして応用することを検討した。
相対湿度, 海面圧力, 地電位高さなど, タグ付き数値アンサンブル予測および観測データをML法に取り入れた。
回帰、量子レグレッション、tercile 分類タスクでは、線形モデル、ランダムフォレスト、畳み込みニューラルネットワーク、および積み重ねモデルを用いて検討する。
- 参考スコア(独自算出の注目度): 10.083361616081874
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Producing high-quality forecasts of key climate variables, such as temperature and precipitation, on subseasonal time scales has long been a gap in operational forecasting. This study explores an application of machine learning (ML) models as post-processing tools for subseasonal forecasting. Lagged numerical ensemble forecasts (i.e., an ensemble where the members have different initialization dates) and observational data, including relative humidity, pressure at sea level, and geopotential height, are incorporated into various ML methods to predict monthly average precipitation and two-meter temperature two weeks in advance for the continental United States. For regression, quantile regression, and tercile classification tasks, we consider using linear models, random forests, convolutional neural networks, and stacked models (a multi-model approach based on the prediction of the individual ML models). Unlike previous ML approaches that often use ensemble mean alone, we leverage information embedded in the ensemble forecasts to enhance prediction accuracy. Additionally, we investigate extreme event predictions that are crucial for planning and mitigation efforts. Considering ensemble members as a collection of spatial forecasts, we explore different approaches to using spatial information. Trade-offs between different approaches may be mitigated with model stacking. Our proposed models outperform standard baselines such as climatological forecasts and ensemble means. In addition, we investigate feature importance, trade-offs between using the full ensemble or only the ensemble mean, and different modes of accounting for spatial variability.
- Abstract(参考訳): 温暖化や降水などの重要な気候変数の季節下時間スケールにおける高品質な予測は、長年にわたって運用上の予測のギャップであった。
本研究では,機械学習モデル(ML)を時系列予測のための後処理ツールとして応用することを検討した。
大陸アメリカにおける月平均降水量と2週間前の2週間の気温を予測するために、タグ付き数値アンサンブル予測(すなわち、メンバーが初期化日が異なるアンサンブル)と観測データ(相対湿度、海面圧力、測地高度など)をMLの様々な手法に組み込む。
回帰、量子レグレッション、およびtercile分類タスクでは、線形モデル、ランダムフォレスト、畳み込みニューラルネットワーク、および積み重ねモデル(個々のMLモデルの予測に基づくマルチモデルアプローチ)を用いて検討する。
アンサンブルを単独で使用する従来のMLアプローチとは異なり、アンサンブル予測に埋め込まれた情報を活用して予測精度を向上させる。
さらに,計画や緩和に不可欠な極端な事象予測についても検討する。
アンサンブルメンバーを空間予測の集合として考慮し、空間情報を用いた様々なアプローチを探求する。
異なるアプローチ間のトレードオフは、モデルの積み重ねによって緩和される可能性がある。
提案手法は,気候予報やアンサンブル手段などの標準基準よりも優れている。
さらに,全アンサンブルを用いた場合とアンサンブル平均のみを用いた場合のトレードオフ,空間的変動を考慮した説明方法の相違について検討した。
関連論文リスト
- An ensemble of data-driven weather prediction models for operational sub-seasonal forecasting [0.08106028186803123]
運用可能なマルチモデルアンサンブル天気予報システムを提案する。
データ駆動型天気予報モデルを用いたマルチモデルアンサンブル手法により、最先端のサブシーズン・シーズン・シーズン予測を実現することができる。
論文 参考訳(メタデータ) (2024-03-22T20:01:53Z) - Predictive Churn with the Set of Good Models [64.05949860750235]
近似機械学習モデルの集合に対する競合予測の効果について検討する。
ラーショモン集合内のモデル間の係り受けに関する理論的結果を示す。
当社のアプローチは、コンシューマ向けアプリケーションにおいて、より予測し、削減し、混乱を避けるためにどのように使用できるかを示します。
論文 参考訳(メタデータ) (2024-02-12T16:15:25Z) - Attention-Based Ensemble Pooling for Time Series Forecasting [55.2480439325792]
本稿では,候補モデル予測よりも重み付き平均値を実行するプーリング法を提案する。
本手法は,非定常ロレンツ63方程式の動力学の多段階予測と,COVID-19による週次死亡事故の1段階予測という2つの時系列予測問題に対して試行する。
論文 参考訳(メタデータ) (2023-10-24T22:59:56Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Precipitation nowcasting with generative diffusion models [0.0]
降水処理における拡散モデルの有効性について検討した。
本研究は, 確立されたU-Netモデルの性能と比較したものである。
論文 参考訳(メタデータ) (2023-08-13T09:51:16Z) - Joint Forecasting of Panoptic Segmentations with Difference Attention [72.03470153917189]
シーン内の全てのオブジェクトを共同で予測する新しいパノプティックセグメンテーション予測モデルについて検討する。
提案したモデルをCityscapesとAIODriveデータセット上で評価する。
論文 参考訳(メタデータ) (2022-04-14T17:59:32Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - SubseasonalClimateUSA: A Dataset for Subseasonal Forecasting and
Benchmarking [20.442879707675115]
SubseasonalClimateUSAは、米国におけるサブシーズン予測モデルのトレーニングとベンチマークのための、キュレートされたデータセットである。
このデータセットを使用して、操作力学モデル、古典的気象ベースライン、最先端の機械学習10、文献からのディープラーニングベースのメソッドなど、さまざまなモデルのスイートをベンチマークします。
論文 参考訳(メタデータ) (2021-09-21T18:42:10Z) - Feature-weighted Stacking for Nonseasonal Time Series Forecasts: A Case
Study of the COVID-19 Epidemic Curves [0.0]
本研究では,非シーズン時間帯での利用可能性について,予測におけるアンサンブル手法について検討する。
予備予測段階における予測能力を証明する2つの予測モデルと2つのメタ機能からなる重畳アンサンブルを用いて遅延データ融合を提案する。
論文 参考訳(メタデータ) (2021-08-19T14:44:46Z) - Test-time Collective Prediction [73.74982509510961]
マシンラーニングの複数のパーティは、将来のテストポイントを共同で予測したいと考えています。
エージェントは、すべてのエージェントの集合の集合的な専門知識の恩恵を受けることを望んでいるが、データやモデルパラメータを解放する意思はないかもしれない。
我々は、各エージェントの事前学習モデルを利用して、テスト時に集合的な予測を行う分散型メカニズムを探索する。
論文 参考訳(メタデータ) (2021-06-22T18:29:58Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。