論文の概要: Diverse Multi-Answer Retrieval with Determinantal Point Processes
- arxiv url: http://arxiv.org/abs/2211.16029v1
- Date: Tue, 29 Nov 2022 08:54:05 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 16:47:40.594268
- Title: Diverse Multi-Answer Retrieval with Determinantal Point Processes
- Title(参考訳): 行列点過程を用いた多解探索
- Authors: Poojitha Nandigam, Nikhil Rayaprolu, Manish Shrivastava
- Abstract要約: 本稿では,BERTをカーネルとして利用する決定点プロセスを用いた再ランク付け手法を提案する。
その結果,本手法はAmbigQAデータセットの最先端手法よりも優れていた。
- 参考スコア(独自算出の注目度): 11.925050407713597
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Often questions provided to open-domain question answering systems are
ambiguous. Traditional QA systems that provide a single answer are incapable of
answering ambiguous questions since the question may be interpreted in several
ways and may have multiple distinct answers. In this paper, we address
multi-answer retrieval which entails retrieving passages that can capture
majority of the diverse answers to the question. We propose a re-ranking based
approach using Determinantal point processes utilizing BERT as kernels. Our
method jointly considers query-passage relevance and passage-passage
correlation to retrieve passages that are both query-relevant and diverse.
Results demonstrate that our re-ranking technique outperforms state-of-the-art
method on the AmbigQA dataset.
- Abstract(参考訳): オープンドメインの質問応答システムに提供される質問は曖昧であることが多い。
一つの答えを提供する従来のQAシステムは、いくつかの方法で解釈され、複数の異なる答えを持つため、曖昧な質問に答えることができない。
本稿では,質問に対する多種多様な回答の大多数をキャプチャできる節を検索するマルチアンワー検索について述べる。
本稿では,BERTをカーネルとして利用する決定点プロセスを用いた再ランク付け手法を提案する。
本手法では,問合せ関係と問合せ関係の相関関係を共同で考慮し,問合せ関係の多様かつ多様な問合せを検索する。
その結果,本手法はAmbigQAデータセットの最先端手法よりも優れていた。
関連論文リスト
- Answering Ambiguous Questions with a Database of Questions, Answers, and
Revisions [95.92276099234344]
ウィキペディアから生成される曖昧な質問のデータベースを利用して、あいまいな質問に答えるための新しい最先端技術を提案する。
提案手法は,リコール対策で15%,予測出力から不明瞭な質問を評価する尺度で10%向上する。
論文 参考訳(メタデータ) (2023-08-16T20:23:16Z) - Multifaceted Improvements for Conversational Open-Domain Question
Answering [54.913313912927045]
対話型オープンドメイン質問回答(MICQA)のための多面的改善フレームワークを提案する。
第一に、提案したKL分割に基づく正規化は、検索と解答のためのより良い質問理解をもたらすことができる。
第二に、追加されたポストランカモジュールは、より関連性の高いパスをトップにプッシュし、2アスペクトの制約で読者に選択できる。
第3に、十分に設計されたカリキュラム学習戦略は、訓練と推論の黄金の通路設定のギャップを効果的に狭め、黄金の通路支援なしで真の答えを見つけることを奨励する。
論文 参考訳(メタデータ) (2022-04-01T07:54:27Z) - Adaptive Information Seeking for Open-Domain Question Answering [61.39330982757494]
本稿では,オープンドメイン質問応答,すなわちAISOに対する適応型情報探索手法を提案する。
学習方針によると、AISOは適切な検索行動を選択し、各ステップで行方不明の証拠を探すことができる。
AISOは、検索と回答の評価の両方の観点から、事前定義された戦略で全てのベースライン手法を上回ります。
論文 参考訳(メタデータ) (2021-09-14T15:08:13Z) - Joint Passage Ranking for Diverse Multi-Answer Retrieval [56.43443577137929]
質問に対する複数の異なる回答をカバーするために、パスの取得を必要とする探索不足の問題であるマルチアンサー検索について検討する。
モデルが別の有効な答えを逃す費用で同じ答えを含む通路を繰り返すべきではないので、このタスクは、検索された通路の共同モデリングを必要とします。
本稿では,再順位に着目したジョイントパス検索モデルであるJPRを紹介する。
回収された通路の合同確率をモデル化するために、JPRは、新しい訓練および復号アルゴリズムを備えた通路のシーケンスを選択する自動回帰リタイナを利用する。
論文 参考訳(メタデータ) (2021-04-17T04:48:36Z) - Diverse and Non-redundant Answer Set Extraction on Community QA based on
DPPs [18.013010857062643]
コミュニティベースの質問応答プラットフォームでは、ユーザが多くの回答の中から有用な情報を得るのに時間がかかる。
本稿では,回答のランク付けよりも多様で非冗長な回答セットを選択することを提案する。
論文 参考訳(メタデータ) (2020-11-18T07:33:03Z) - Effective FAQ Retrieval and Question Matching With Unsupervised
Knowledge Injection [10.82418428209551]
質問に対して適切な回答を得るための文脈言語モデルを提案する。
また、ドメイン固有の単語間のトポロジ関連関係を教師なしの方法で活用することについても検討する。
提案手法のバリエーションを,公開可能な中国語FAQデータセット上で評価し,さらに大規模質問マッチングタスクに適用し,コンテキスト化する。
論文 参考訳(メタデータ) (2020-10-27T05:03:34Z) - Answering Any-hop Open-domain Questions with Iterative Document
Reranking [62.76025579681472]
オープンドメインの問に答える統合QAフレームワークを提案する。
提案手法は,シングルホップおよびマルチホップのオープンドメインQAデータセットにおいて,最先端技術に匹敵する性能を継続的に達成する。
論文 参考訳(メタデータ) (2020-09-16T04:31:38Z) - Crossing Variational Autoencoders for Answer Retrieval [50.17311961755684]
質問・回答アライメントと質問・回答セマンティクスは、表現を学ぶための重要な信号である。
そこで本研究では,回答を一致させた質問を生成し,回答を一致した質問で生成することで,変分自動エンコーダを横断する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T01:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。