論文の概要: A Cross-Conformal Predictor for Multi-label Classification
- arxiv url: http://arxiv.org/abs/2211.16238v1
- Date: Tue, 29 Nov 2022 14:21:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 17:08:00.396928
- Title: A Cross-Conformal Predictor for Multi-label Classification
- Title(参考訳): 複数ラベル分類のためのクロスコンフォーマル予測器
- Authors: Harris Papadopoulos
- Abstract要約: マルチラベル学習では、各インスタンスは同時に複数のクラスに関連付けられている。
本研究は,マルチラベル学習環境におけるコンフォーマル予測(Conformal Prediction)というフレームワークの適用について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unlike the typical classification setting where each instance is associated
with a single class, in multi-label learning each instance is associated with
multiple classes simultaneously. Therefore the learning task in this setting is
to predict the subset of classes to which each instance belongs. This work
examines the application of a recently developed framework called Conformal
Prediction (CP) to the multi-label learning setting. CP complements the
predictions of machine learning algorithms with reliable measures of
confidence. As a result the proposed approach instead of just predicting the
most likely subset of classes for a new unseen instance, also indicates the
likelihood of each predicted subset being correct. This additional information
is especially valuable in the multi-label setting where the overall uncertainty
is extremely high.
- Abstract(参考訳): 各インスタンスが1つのクラスに関連付けられる典型的な分類設定とは異なり、マルチラベル学習では、各インスタンスは複数のクラスに同時に関連付けられる。
したがって、この設定の学習タスクは、各インスタンスが属するクラスのサブセットを予測することである。
本研究では,最近開発された Conformal Prediction (CP) というフレームワークを多言語学習環境に適用する。
CPは、信頼性の信頼できる尺度で機械学習アルゴリズムの予測を補完する。
その結果、提案されたアプローチは、新しいunseenインスタンスの最も可能性の高いクラスのサブセットを予測するだけでなく、予測された各サブセットが正しい可能性を示す。
この追加情報は、全体的な不確実性が極めて高いマルチラベル環境で特に有用である。
関連論文リスト
- Probably Approximately Precision and Recall Learning [62.912015491907994]
精度とリコールは機械学習の基本的な指標である。
一方的なフィードバック – トレーニング中にのみ肯定的な例が観察される – は,多くの実践的な問題に固有のものだ。
PAC学習フレームワークでは,各仮説をグラフで表現し,エッジは肯定的な相互作用を示す。
論文 参考訳(メタデータ) (2024-11-20T04:21:07Z) - Can Class-Priors Help Single-Positive Multi-Label Learning? [40.312419865957224]
シングル陽性マルチラベル学習(SPMLL)は、典型的には弱教師付きマルチラベル学習問題である。
クラスプライア推定器を導入し、理論上はクラスプライアに収束することが保証されているクラスプライアを推定することができる。
推定されたクラスプライヤに基づいて、分類のための非バイアスリスク推定器が導出され、対応するリスク最小化器が、完全に教師されたデータ上で、最適リスク最小化器にほぼ収束することを保証できる。
論文 参考訳(メタデータ) (2023-09-25T05:45:57Z) - Class-Conditional Conformal Prediction with Many Classes [60.8189977620604]
類似した共形スコアを持つクラスをクラスタ化するクラスタ化共形予測法を提案する。
クラスタ化されたコンフォメーションは、クラス条件カバレッジとセットサイズメトリクスの点で、既存のメソッドよりも一般的に優れています。
論文 参考訳(メタデータ) (2023-06-15T17:59:02Z) - Few-shot Classification via Ensemble Learning with Multi-Order
Statistics [9.145742362513932]
基本クラスにおけるアンサンブル学習を活用することで,新たなクラスにおける真の誤りを低減できることを示す。
本稿では,多階統計を用いたアンサンブル学習法(ELMOS)を提案する。
提案手法は,複数ショットの分類ベンチマークデータセット上で,最先端の性能を実現することができることを示す。
論文 参考訳(メタデータ) (2023-04-30T11:41:01Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
本稿では,アンサンブル分類とエビデンス理論を用いた新しい検出手法を提案する。
固体アンサンブル分類器を構築するためのプール選択戦略が提示される。
我々は異常検出手法の不確実性を利用する。
論文 参考訳(メタデータ) (2022-12-23T00:50:41Z) - Semi-supervised Predictive Clustering Trees for (Hierarchical) Multi-label Classification [2.706328351174805]
本稿では,予測クラスタリング木の半教師付き学習に基づく階層型マルチラベル分類手法を提案する。
また,この手法をアンサンブル学習に拡張し,ランダムな森林アプローチに基づく手法を提案する。
論文 参考訳(メタデータ) (2022-07-19T12:49:00Z) - Evolving Multi-Label Fuzzy Classifier [5.53329677986653]
マルチラベル分類は、同時に複数のクラスに1つのサンプルを割り当てるという問題に対処するために、機械学習コミュニティで多くの注目を集めている。
本稿では,新たなマルチラベルサンプルをインクリメンタルかつシングルパスで自己適応・自己展開可能な多ラベルファジィ分類器(EFC-ML)を提案する。
論文 参考訳(メタデータ) (2022-03-29T08:01:03Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Federated Learning with Only Positive Labels [71.63836379169315]
FedAwS(Federated Averaging with Spreadout)という,正のラベルのみを用いたトレーニングのための汎用フレームワークを提案する。
理論的にも経験的にも、FedAwSは、ユーザが負のラベルにアクセス可能な従来の学習のパフォーマンスとほぼ一致していることを示す。
論文 参考訳(メタデータ) (2020-04-21T23:35:02Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。