Self-Supervised Mental Disorder Classifiers via Time Reversal
- URL: http://arxiv.org/abs/2211.16398v2
- Date: Wed, 30 Nov 2022 18:18:10 GMT
- Title: Self-Supervised Mental Disorder Classifiers via Time Reversal
- Authors: Zafar Iqbal, Usman Mahmood, Zening Fu, Sergey Plis
- Abstract summary: We demonstrate that a model trained on the time direction of functional neuro-imaging data could help in any downstream task.
We train a Deep Neural Network on Independent components derived from fMRI data using the Independent component analysis (ICA) technique.
We show that learning time direction helps a model learn some causal relation in fMRI data that helps in faster convergence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data scarcity is a notable problem, especially in the medical domain, due to
patient data laws. Therefore, efficient Pre-Training techniques could help in
combating this problem. In this paper, we demonstrate that a model trained on
the time direction of functional neuro-imaging data could help in any
downstream task, for example, classifying diseases from healthy controls in
fMRI data. We train a Deep Neural Network on Independent components derived
from fMRI data using the Independent component analysis (ICA) technique. It
learns time direction in the ICA-based data. This pre-trained model is further
trained to classify brain disorders in different datasets. Through various
experiments, we have shown that learning time direction helps a model learn
some causal relation in fMRI data that helps in faster convergence, and
consequently, the model generalizes well in downstream classification tasks
even with fewer data records.
Related papers
- Self-Supervised Pre-training Tasks for an fMRI Time-series Transformer in Autism Detection [3.665816629105171]
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that encompasses a wide variety of symptoms and degrees of impairment.
We have developed a transformer-based self-supervised framework that directly analyzes time-series fMRI data without computing functional connectivity.
We show that randomly masking entire ROIs gives better model performance than randomly masking time points in the pre-training step.
arXiv Detail & Related papers (2024-09-18T20:29:23Z) - Self-Supervised Pretext Tasks for Alzheimer's Disease Classification using 3D Convolutional Neural Networks on Large-Scale Synthetic Neuroimaging Dataset [11.173478552040441]
Alzheimer's Disease (AD) induces both localised and widespread neural degenerative changes throughout the brain.
In this work, we evaluated several unsupervised methods to train a feature extractor for downstream AD vs. CN classification.
arXiv Detail & Related papers (2024-06-20T11:26:32Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
We propose DynDepNet, a novel method for learning the optimal time-varying dependency structure of fMRI data induced by downstream prediction tasks.
Experiments on real-world fMRI datasets, for the task of sex classification, demonstrate that DynDepNet achieves state-of-the-art results.
arXiv Detail & Related papers (2022-09-27T16:32:11Z) - Feature robustness and sex differences in medical imaging: a case study
in MRI-based Alzheimer's disease detection [1.7616042687330637]
We compare two classification schemes on the ADNI MRI dataset.
We do not find a strong dependence of model performance for male and female test subjects on the sex composition of the training dataset.
arXiv Detail & Related papers (2022-04-04T17:37:54Z) - Analyzing the Effects of Handling Data Imbalance on Learned Features
from Medical Images by Looking Into the Models [50.537859423741644]
Training a model on an imbalanced dataset can introduce unique challenges to the learning problem.
We look deeper into the internal units of neural networks to observe how handling data imbalance affects the learned features.
arXiv Detail & Related papers (2022-04-04T09:38:38Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
A lifelong learning agent is able to continually learn from potentially infinite streams of pattern sensory data.
One major historic difficulty in building agents that adapt is that neural systems struggle to retain previously-acquired knowledge when learning from new samples.
This problem is known as catastrophic forgetting (interference) and remains an unsolved problem in the domain of machine learning to this day.
arXiv Detail & Related papers (2021-12-09T07:11:14Z) - Evaluating deep transfer learning for whole-brain cognitive decoding [11.898286908882561]
Transfer learning (TL) is well-suited to improve the performance of deep learning (DL) models in datasets with small numbers of samples.
Here, we evaluate TL for the application of DL models to the decoding of cognitive states from whole-brain functional Magnetic Resonance Imaging (fMRI) data.
arXiv Detail & Related papers (2021-11-01T15:44:49Z) - Variational voxelwise rs-fMRI representation learning: Evaluation of
sex, age, and neuropsychiatric signatures [0.0]
We propose to apply non-linear representation learning to voxelwise rs-fMRI data.
Learning the non-linear representations is done using a variational autoencoder (VAE)
VAE is trained on voxelwise rs-fMRI data and performs non-linear dimensionality reduction that retains meaningful information.
arXiv Detail & Related papers (2021-08-29T05:27:32Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.