論文の概要: Findings of the WMT 2022 Shared Task on Translation Suggestion
- arxiv url: http://arxiv.org/abs/2211.16717v1
- Date: Wed, 30 Nov 2022 03:48:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 16:39:01.025819
- Title: Findings of the WMT 2022 Shared Task on Translation Suggestion
- Title(参考訳): WMT2022の翻訳提案における共有タスクの発見
- Authors: Zhen Yang, Fandong Meng, Yingxue Zhang, Ernan Li and Jie Zhou
- Abstract要約: We report the results of the first edition of the WMT shared task on Translation Suggestion。
このタスクは、機械翻訳(MT)によって生成された文書全体に対して、特定の単語やフレーズの代替手段を提供することを目的としている。
2つのサブタスク、すなわち単純翻訳提案と暗示付き翻訳提案で構成されている。
- 参考スコア(独自算出の注目度): 63.457874930232926
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We report the result of the first edition of the WMT shared task on
Translation Suggestion (TS). The task aims to provide alternatives for specific
words or phrases given the entire documents generated by machine translation
(MT). It consists two sub-tasks, namely, the naive translation suggestion and
translation suggestion with hints. The main difference is that some hints are
provided in sub-task two, therefore, it is easier for the model to generate
more accurate suggestions. For sub-task one, we provide the corpus for the
language pairs English-German and English-Chinese. And only English-Chinese
corpus is provided for the sub-task two.
We received 92 submissions from 5 participating teams in sub-task one and 6
submissions for the sub-task 2, most of them covering all of the translation
directions. We used the automatic metric BLEU for evaluating the performance of
each submission.
- Abstract(参考訳): 本稿では,wmt共有タスク(ts)の第1版の結果について報告する。
このタスクは、機械翻訳(MT)によって生成された文書全体に対して、特定の単語やフレーズの代替手段を提供することを目的としている。
これは2つのサブタスク、すなわち、ナイーブな翻訳提案とヒント付き翻訳提案からなる。
主な違いは、いくつかのヒントがサブタスク2で提供されるため、モデルがより正確な提案を生成するのが容易である。
サブタスクでは、英語-ドイツ語と英語-中国語のペアのコーパスを提供する。
サブタスク2には、英語と中国語のコーパスのみが提供される。
サブタスク1の参加者5チームから92の申し込みと、サブタスク2の6つの申し込みを受け取りました。
各サブミッションのパフォーマンスを評価するために、自動メトリックbleuを使用しました。
関連論文リスト
- SemEval-2024 Task 8: Multidomain, Multimodel and Multilingual Machine-Generated Text Detection [68.858931667807]
Subtask Aは、テキストが人間によって書かれたか、機械によって生成されたかを決定するバイナリ分類タスクである。
サブタスクBは、テキストの正確なソースを検出し、それが人間によって書かれたか、特定のLCMによって生成されたかを認識する。
Subtask Cは、著者が人間から機械へ遷移するテキスト内の変化点を特定することを目的としている。
論文 参考訳(メタデータ) (2024-04-22T13:56:07Z) - AAdaM at SemEval-2024 Task 1: Augmentation and Adaptation for Multilingual Semantic Textual Relatedness [16.896143197472114]
本稿では,アフリカとアジアの言語に対するセマンティックテキスト関連性(SemEval-2024 Task 1: Semantic Textual Relatedness)について述べる。
本稿では,限られたトレーニングデータの低リソース化問題に対処するために,機械翻訳によるデータ拡張を提案する。
我々のシステムは、サブタスクA(教師付き学習)とサブタスクC(言語間の移動)の両方において、すべてのチームの中で最善を尽くします。
論文 参考訳(メタデータ) (2024-04-01T21:21:15Z) - Rethinking and Improving Multi-task Learning for End-to-end Speech
Translation [51.713683037303035]
異なる時間とモジュールを考慮したタスク間の整合性について検討する。
テキストエンコーダは、主にクロスモーダル変換を容易にするが、音声におけるノイズの存在は、テキストと音声表現の一貫性を妨げる。
長さと表現の差を軽減し,モーダルギャップを橋渡しする,STタスクのための改良型マルチタスク学習(IMTL)手法を提案する。
論文 参考訳(メタデータ) (2023-11-07T08:48:46Z) - UvA-MT's Participation in the WMT23 General Translation Shared Task [7.4336950563281174]
本稿では,UvA-MTがWMT 2023に提案した汎用機械翻訳タスクについて述べる。
そこで本研究では,一方のモデルを用いて双方向タスクを処理することにより,従来のバイリンガル翻訳と同等の結果が得られることを示す。
論文 参考訳(メタデータ) (2023-10-15T20:49:31Z) - TSMind: Alibaba and Soochow University's Submission to the WMT22
Translation Suggestion Task [16.986003476984965]
本稿では,Alibaba と Soochow 大学 TSMind の WMT 2022 Shared Task on Translation Suggestion への共同提出について述べる。
基本的に、大規模な事前学習モデルに基づいて、下流タスクを微調整するモデルパラダイムを利用する。
トレーニングデータの限られた使用状況を考えると,WeTSが提案するデータ拡張戦略に従えば,TSモデルの性能が向上する。
論文 参考訳(メタデータ) (2022-11-16T15:43:31Z) - Effective Cross-Task Transfer Learning for Explainable Natural Language
Inference with T5 [50.574918785575655]
2つのタスクのパフォーマンス向上という文脈において、逐次微調整とマルチタスク学習のモデルを比較した。
この結果から,2つのタスクのうち,第1のタスクにおいて逐次マルチタスク学習は良好に調整できるが,第2のタスクでは性能が低下し,過度な適合に苦しむことが明らかとなった。
論文 参考訳(メタデータ) (2022-10-31T13:26:08Z) - Bridging Cross-Lingual Gaps During Leveraging the Multilingual
Sequence-to-Sequence Pretraining for Text Generation [80.16548523140025]
プレトレインとファインチューンの間のギャップを埋めるために、コードスイッチングの復元タスクを追加して、バニラプレトレイン-ファインチューンパイプラインを拡張します。
提案手法は,言語間文表現距離を狭くし,簡単な計算コストで低周波語翻訳を改善する。
論文 参考訳(メタデータ) (2022-04-16T16:08:38Z) - Zero-Shot Information Extraction as a Unified Text-to-Triple Translation [56.01830747416606]
我々は、テキストから3つの翻訳フレームワークに一連の情報抽出タスクを投入した。
タスク固有の入力テキストと出力トリプルの変換としてタスクを形式化する。
本稿では,オープン情報抽出におけるゼロショット性能について検討する。
論文 参考訳(メタデータ) (2021-09-23T06:54:19Z) - BUT-FIT at SemEval-2020 Task 5: Automatic detection of counterfactual
statements with deep pre-trained language representation models [6.853018135783218]
本稿では,BUT-FITによるSemEval-2020 Task 5: Modelling Causal Reasoning in Language: Detecting Counterfactualsについて述べる。
課題は、ある文が偽物を含むかどうかを検出することである。
どちらのサブタスクでも,RoBERTa LRMが最善を尽くすことがわかった。
論文 参考訳(メタデータ) (2020-07-28T11:16:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。