論文の概要: Refining Generative Process with Discriminator Guidance in Score-based
Diffusion Models
- arxiv url: http://arxiv.org/abs/2211.17091v1
- Date: Mon, 28 Nov 2022 20:04:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 15:27:27.673152
- Title: Refining Generative Process with Discriminator Guidance in Score-based
Diffusion Models
- Title(参考訳): スコアベース拡散モデルにおける判別器指導による精錬生成過程
- Authors: Dongjun Kim, Yeongmin Kim, Wanmo Kang, Il-Chul Moon
- Abstract要約: 同一のスコアチェックポイントが与えられた場合, 元の生成プロセスよりも逆のプロセスに近い新しい生成プロセスを導入する。
具体的には、生成過程を実データと生成データとの間の補助的識別器で調整し、その調整された生成過程は、原プロセスよりも現実的なサンプルを生成する。
- 参考スコア(独自算出の注目度): 15.42424133140787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While the success of diffusion models has been witnessed in various domains,
only a few works have investigated the variation of the generative process. In
this paper, we introduce a new generative process that is closer to the reverse
process than the original generative process, given the identical score
checkpoint. Specifically, we adjust the generative process with the auxiliary
discriminator between the real data and the generated data. Consequently, the
adjusted generative process with the discriminator generates more realistic
samples than the original process. In experiments, we achieve new SOTA FIDs of
1.74 on CIFAR-10, 1.33 on CelebA, and 1.88 on FFHQ in the unconditional
generation.
- Abstract(参考訳): 拡散モデルの成功は様々な領域で目撃されているが、生成過程の変動についての研究はごくわずかである。
本稿では、スコアチェックポイントが同じであれば、元の生成プロセスよりも逆プロセスに近い新しい生成プロセスを提案する。
具体的には、生成過程を実データと生成データとの間の補助判別器で調整する。
これにより、判別器による調整された生成プロセスは、元のプロセスよりも現実的なサンプルを生成する。
実験では,CIFAR-10では1.74,CelebAでは1.33,FFHQでは1.88の新たなSOTA FIDが得られた。
関連論文リスト
- Rejection via Learning Density Ratios [50.91522897152437]
拒絶による分類は、モデルを予測しないことを許容する学習パラダイムとして現れます。
そこで我々は,事前学習したモデルの性能を最大化する理想的なデータ分布を求める。
私たちのフレームワークは、クリーンでノイズの多いデータセットで実証的にテストされます。
論文 参考訳(メタデータ) (2024-05-29T01:32:17Z) - Discriminator Guidance for Autoregressive Diffusion Models [12.139222986297264]
本稿では,自己回帰拡散モデルの設定において差別的ガイダンスを導入する。
判別器と事前学習した生成モデルとを個別のケースで併用する方法を導出する。
論文 参考訳(メタデータ) (2023-10-24T13:14:22Z) - Bi-discriminator Domain Adversarial Neural Networks with Class-Level
Gradient Alignment [87.8301166955305]
そこで本研究では,クラスレベルのアライメントアライメントを有するバイディミネータドメイン対向ニューラルネットワークを提案する。
BACGは、領域分布の整合性を改善するために勾配信号と二階確率推定を利用する。
さらに、対照的な学習にインスパイアされ、トレーニングプロセスを大幅に短縮できるメモリバンクベースの変種であるFast-BACGを開発した。
論文 参考訳(メタデータ) (2023-10-21T09:53:17Z) - Dynamically Masked Discriminator for Generative Adversarial Networks [71.33631511762782]
GAN(Generative Adversarial Networks)のトレーニングは依然として難しい問題である。
識別器は、実際の/生成されたデータの分布を学習してジェネレータを訓練する。
本稿では,オンライン連続学習の観点から,GANの新たな手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T12:07:01Z) - Reusing the Task-specific Classifier as a Discriminator:
Discriminator-free Adversarial Domain Adaptation [55.27563366506407]
非教師付きドメイン適応(UDA)のための識別器なし対向学習ネットワーク(DALN)を導入する。
DALNは、統一された目的によって明確なドメインアライメントとカテゴリの区別を達成する。
DALNは、さまざまなパブリックデータセット上の既存の最先端(SOTA)メソッドと比較して好意的に比較する。
論文 参考訳(メタデータ) (2022-04-08T04:40:18Z) - ELECRec: Training Sequential Recommenders as Discriminators [94.93227906678285]
シーケンシャルレコメンデーションは、しばしば生成タスク、すなわち、ユーザの関心事の次の項目を生成するためにシーケンシャルエンコーダを訓練すると考えられる。
我々は、ジェネレータではなく、識別器としてシーケンシャルレコメンデータを訓練することを提案する。
本手法は,サンプル項目が「現実の」対象項目であるか否かを識別するために識別器を訓練する。
論文 参考訳(メタデータ) (2022-04-05T06:19:45Z) - Re-using Adversarial Mask Discriminators for Test-time Training under
Distribution Shifts [10.647970046084916]
安定判別器の訓練によって表現的損失関数が生成され、推論時に再使用してセグメント化ミスを検出し、修正することができると論じる。
我々は、識別器と画像再構成コストを(デコーダを介して)組み合わせることで、モデルをさらに改善できることを示す。
提案手法は単純で,事前学習したGANの試験時間性能を向上させる。
論文 参考訳(メタデータ) (2021-08-26T17:31:46Z) - Exploring Dropout Discriminator for Domain Adaptation [27.19677042654432]
新しいドメインへの分類器の適応は、機械学習における難しい問題の1つである。
本稿では, サンプル分布の分散を徐々に増大させるカリキュラムベースのドロップアウト判別器を提案する。
識別器のアンサンブルは、モデルがデータ分散を効率的に学習するのに役立つ。
論文 参考訳(メタデータ) (2021-07-09T06:11:34Z) - Out-of-Scope Intent Detection with Self-Supervision and Discriminative
Training [20.242645823965145]
タスク指向対話システムにおいて、スコープ外インテント検出は実用上重要である。
本稿では,テストシナリオをシミュレートして,スコープ外インテント分類器をエンドツーエンドに学習する手法を提案する。
提案手法を4つのベンチマーク・ダイアログ・データセット上で広範囲に評価し,最先端のアプローチに対する大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-16T08:17:18Z) - Data-Efficient Instance Generation from Instance Discrimination [40.71055888512495]
本稿では,インスタンス識別に基づくデータ効率の高いインスタンス生成手法を提案する。
本研究では,インスタンス識別に基づくデータ効率の高いインスタンス生成(InsGen)手法を提案する。
論文 参考訳(メタデータ) (2021-06-08T17:52:59Z) - On Positive-Unlabeled Classification in GAN [130.43248168149432]
本稿では,標準GANに対する肯定的かつ未ラベルの分類問題を定義する。
その後、GANにおける差別者の訓練を安定させる新しい手法が導かれる。
論文 参考訳(メタデータ) (2020-02-04T05:59:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。