論文の概要: Targets in Reinforcement Learning to solve Stackelberg Security Games
- arxiv url: http://arxiv.org/abs/2211.17132v1
- Date: Wed, 30 Nov 2022 16:08:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-01 15:37:35.475571
- Title: Targets in Reinforcement Learning to solve Stackelberg Security Games
- Title(参考訳): stackelbergのセキュリティゲームを解くための強化学習のターゲット
- Authors: Saptarashmi Bandyopadhyay, Chenqi Zhu, Philip Daniel, Joshua Morrison,
Ethan Shay, John Dickerson
- Abstract要約: 強化学習アルゴリズムは、違法密輸、密猟、森林伐採、気候変動、空港のセキュリティなど、現実世界の状況にうまく適用されている。
これらのシナリオは、ディフェンダーとアタッカーがターゲットリソースを制御するために競うStackelbergセキュリティゲーム(SSG)としてフレーム化することができる。
本稿では,RLアルゴリズムにおけるターゲット表現の改善に焦点をあて,RLにおけるSSGのモデル化について検討する。
- 参考スコア(独自算出の注目度): 13.18889409506249
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Reinforcement Learning (RL) algorithms have been successfully applied to real
world situations like illegal smuggling, poaching, deforestation, climate
change, airport security, etc. These scenarios can be framed as Stackelberg
security games (SSGs) where defenders and attackers compete to control target
resources. The algorithm's competency is assessed by which agent is controlling
the targets. This review investigates modeling of SSGs in RL with a focus on
possible improvements of target representations in RL algorithms.
- Abstract(参考訳): 強化学習(RL)アルゴリズムは、違法密輸、密猟、森林伐採、気候変動、空港のセキュリティなど、現実世界の状況にうまく適用されている。
これらのシナリオは、ディフェンダーとアタッカーがターゲットリソースを制御するために競うStackelbergセキュリティゲーム(SSG)としてフレーム化することができる。
アルゴリズムの能力は、どのエージェントがターゲットを制御するかによって評価される。
本稿では,RLアルゴリズムにおけるターゲット表現の改善に焦点をあて,RLにおけるSSGのモデル化について検討する。
関連論文リスト
- Leveraging Reinforcement Learning in Red Teaming for Advanced Ransomware Attack Simulations [7.361316528368866]
本稿では,ランサムウェア攻撃のシミュレーションに強化学習(RL)を利用する新しい手法を提案する。
実世界のネットワークを模倣するシミュレーション環境でRLエージェントを訓練することにより、効果的な攻撃戦略を迅速に学習することができる。
152ホストのサンプルネットワークの実験結果から,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2024-06-25T14:16:40Z) - SleeperNets: Universal Backdoor Poisoning Attacks Against Reinforcement Learning Agents [16.350898218047405]
強化学習(Reinforcement Learning, RL)は、現実世界の安全クリティカルなアプリケーションでの利用が増加している分野である。
この研究では、特にステルス性のRL(バックドア中毒)に対するトレーニングタイムアタックを調査します。
我々は、敵の目的と最適な政策を見出す目的を結びつける新しい毒殺の枠組みを定式化する。
論文 参考訳(メタデータ) (2024-05-30T23:31:25Z) - ReRoGCRL: Representation-based Robustness in Goal-Conditioned
Reinforcement Learning [29.868059421372244]
Goal-Conditioned Reinforcement Learning (GCRL) は注目されているが、敵の摂動に対するアルゴリズム的堅牢性はいまだ解明されていない。
まず,敵対的コントラスト攻撃に触発されたセミコントラスト表現攻撃を提案する。
次に,セミコントラスト・アジュメンテーションと感性認識正規化器を組み合わせた適応表現手法を提案する。
論文 参考訳(メタデータ) (2023-12-12T16:05:55Z) - Robust Reinforcement Learning as a Stackelberg Game via
Adaptively-Regularized Adversarial Training [43.97565851415018]
ロバスト強化学習(RL)は、モデルエラーや敵攻撃によるパフォーマンス向上に重点を置いている。
既存の文献の多くは、解の概念としてナッシュ平衡を伴うゼロサム同時ゲームとして RARL をモデル化している。
RRL-Stackと呼ばれる一般のStackelbergゲームモデルである、ロバストなRLの階層的な新しい定式化を導入する。
論文 参考訳(メタデータ) (2022-02-19T03:44:05Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Disturbing Reinforcement Learning Agents with Corrupted Rewards [62.997667081978825]
強化学習アルゴリズムに対する報酬の摂動に基づく異なる攻撃戦略の効果を分析します。
敵対的な報酬をスムーズに作成することは学習者を誤解させることができ、低探査確率値を使用すると、学習した政策は報酬を腐敗させるのがより堅牢であることを示しています。
論文 参考訳(メタデータ) (2021-02-12T15:53:48Z) - Provably Efficient Algorithms for Multi-Objective Competitive RL [54.22598924633369]
エージェントの報酬がベクトルとして表現される多目的強化学習(RL)について検討する。
エージェントが相手と競合する設定では、その平均戻りベクトルから目標セットまでの距離によってその性能を測定する。
統計的および計算学的に効率的なアルゴリズムを開発し、関連するターゲットセットにアプローチする。
論文 参考訳(メタデータ) (2021-02-05T14:26:00Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
深部強化学習(DRL)エージェントは、自然な測定誤差や対向雑音を含む観測を通して、その状態を観察する。
観測は真の状態から逸脱するので、エージェントを誤解させ、準最適行動を起こすことができる。
本研究は, 従来の手法を, 対人訓練などの分類タスクの堅牢性向上に応用することは, 多くのRLタスクには有効でないことを示す。
論文 参考訳(メタデータ) (2020-03-19T17:59:59Z) - Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning [48.49658986576776]
深層強化学習(Dep Reinforcement Learning, DRL)は、周囲の環境に適応する優れた能力のおかげで、現実世界に多くの応用がある。
その大きな利点にもかかわらず、DRLは現実のクリティカルシステムやアプリケーションでの使用を妨げている敵攻撃の影響を受けやすい。
本稿では,DRLベースのシステムにおける新たな攻撃と,これらの攻撃を防御するための潜在的対策について述べる。
論文 参考訳(メタデータ) (2020-01-27T10:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。