論文の概要: Learning Progressive Modality-shared Transformers for Effective
Visible-Infrared Person Re-identification
- arxiv url: http://arxiv.org/abs/2212.00226v1
- Date: Thu, 1 Dec 2022 02:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 17:53:02.623230
- Title: Learning Progressive Modality-shared Transformers for Effective
Visible-Infrared Person Re-identification
- Title(参考訳): 実効的可視赤外人物再同定のための漸進的モダリティ共有トランスフォーマーの学習
- Authors: Hu Lu and Xuezhang Zou and Pingping Zhang
- Abstract要約: 我々は,能率VI-ReIDのためのPMT(Progressive Modality-Shared Transformer)という新しいディープラーニングフレームワークを提案する。
モダリティギャップの負の効果を低減するために、まず、グレースケールの画像を補助的なモダリティとして捉え、進歩的な学習戦略を提案する。
クラス内差が大きく,クラス間差が少ない問題に対処するために,識別中心損失を提案する。
- 参考スコア(独自算出の注目度): 27.75907274034702
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-Infrared Person Re-Identification (VI-ReID) is a challenging
retrieval task under complex modality changes. Existing methods usually focus
on extracting discriminative visual features while ignoring the reliability and
commonality of visual features between different modalities. In this paper, we
propose a novel deep learning framework named Progressive Modality-shared
Transformer (PMT) for effective VI-ReID. To reduce the negative effect of
modality gaps, we first take the gray-scale images as an auxiliary modality and
propose a progressive learning strategy. Then, we propose a Modality-Shared
Enhancement Loss (MSEL) to guide the model to explore more reliable identity
information from modality-shared features. Finally, to cope with the problem of
large intra-class differences and small inter-class differences, we propose a
Discriminative Center Loss (DCL) combined with the MSEL to further improve the
discrimination of reliable features. Extensive experiments on SYSU-MM01 and
RegDB datasets show that our proposed framework performs better than most
state-of-the-art methods. For model reproduction, we release the source code at
https://github.com/hulu88/PMT.
- Abstract(参考訳): Visible-Infrared Person Re-Identification (VI-ReID) は複雑なモダリティ変化下での困難な検索課題である。
既存の手法は通常、異なるモダリティ間の視覚的特徴の信頼性と共通性を無視しながら、識別的視覚的特徴の抽出に重点を置いている。
本稿では,効率的なVI-ReIDのためのPMT(Progressive Modality-Shared Transformer)という新しいディープラーニングフレームワークを提案する。
モダリティギャップの悪影響を低減するために,まずグレースケール画像を補助モダリティとして捉え,プログレッシブ学習戦略を提案する。
そこで本研究では,モダリティ共有機能からより信頼性の高い識別情報を探索するためのモデルについて,MSEL(Modality-Shared Enhancement Loss)を提案する。
最後に,クラス内差とクラス間差の小さい問題に対処するため,MSELと組み合わせた識別中心損失(DCL)を提案し,信頼性の高い特徴の識別をさらに向上させる。
sysu-mm01とregdbデータセットの広範な実験により,提案手法は最先端手法よりも優れた性能を示す。
モデル再現のために、ソースコードをhttps://github.com/hulu88/pmtでリリースします。
関連論文リスト
- Exploring Stronger Transformer Representation Learning for Occluded Person Re-Identification [2.552131151698595]
我々はトランスフォーマーに基づく人物識別フレームワークであるSSSC-TransReIDを組み合わせた新しい自己監督・監督手法を提案した。
我々は、ネガティブなサンプルや追加の事前学習なしに、人物の再識別のための特徴表現を強化することができる自己教師付きコントラスト学習ブランチを設計した。
提案モデルでは, 平均平均精度(mAP) とランク1の精度において, 最先端のReID手法よりも優れたRe-ID性能が得られ, 高いマージンで性能が向上する。
論文 参考訳(メタデータ) (2024-10-21T03:17:25Z) - Magic Tokens: Select Diverse Tokens for Multi-modal Object Re-Identification [64.36210786350568]
マルチモーダルオブジェクトReIDのための視覚変換器から多様なトークンを選択するための,textbfEDITORという新しい学習フレームワークを提案する。
我々のフレームワークはマルチモーダルオブジェクトReIDに対してより差別的な機能を生成することができる。
論文 参考訳(メタデータ) (2024-03-15T12:44:35Z) - Cross-Modality Perturbation Synergy Attack for Person Re-identification [66.48494594909123]
相互モダリティReIDの主な課題は、異なるモダリティ間の視覚的差異を効果的に扱うことである。
既存の攻撃方法は、目に見える画像のモダリティの特徴に主に焦点を当てている。
本研究では,クロスモーダルReIDに特化して設計されたユニバーサル摂動攻撃を提案する。
論文 参考訳(メタデータ) (2024-01-18T15:56:23Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification [61.49219876388174]
Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
論文 参考訳(メタデータ) (2023-08-29T06:55:42Z) - Dynamic Enhancement Network for Partial Multi-modality Person
Re-identification [52.70235136651996]
複数のモーダルの表現能力を維持しつつ、任意のモダリティを欠くことができる新しい動的拡張ネットワーク(DENet)を設計する。
欠落状態は変更可能であるため、動的拡張モジュールを設計し、欠落状態に応じて動的にモダリティ特性を適応的に向上する。
論文 参考訳(メタデータ) (2023-05-25T06:22:01Z) - MRCN: A Novel Modality Restitution and Compensation Network for
Visible-Infrared Person Re-identification [36.88929785476334]
本稿では,2つのモダリティ間のギャップを狭めるために,新しいモダリティ再構成補償ネットワーク(MRCN)を提案する。
この手法はRanc-1の95.1%とRegDBデータセットのmAPの89.2%を達成している。
論文 参考訳(メタデータ) (2023-03-26T05:03:18Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - MMD-ReID: A Simple but Effective Solution for Visible-Thermal Person
ReID [20.08880264104061]
本稿では,モダリティギャップを明示的な差分低減制約によって低減する,シンプルで効果的なMDD-ReIDを提案する。
我々はMDD-ReIDの有効性を定性的かつ定量的に実証するための広範囲な実験を行った。
提案手法は,SYSU-MM01およびRegDBデータセットにおける最先端の手法よりも優れている。
論文 参考訳(メタデータ) (2021-11-09T11:33:32Z) - CMTR: Cross-modality Transformer for Visible-infrared Person
Re-identification [38.96033760300123]
可視赤外人物再識別のための相互モダリティトランスフォーマー法(CMTR)
我々は,モダリティの情報をエンコードするために,トークン埋め込みと融合した新しいモダリティ埋め込みを設計する。
提案するCMTRモデルの性能は,既存のCNN方式をはるかに上回っている。
論文 参考訳(メタデータ) (2021-10-18T03:12:59Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。