論文の概要: Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification
- arxiv url: http://arxiv.org/abs/2308.15063v1
- Date: Tue, 29 Aug 2023 06:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 15:28:43.108873
- Title: Learning Cross-modality Information Bottleneck Representation for
Heterogeneous Person Re-Identification
- Title(参考訳): 異種人物再同定のための相互モダリティ情報ボトルネック表現の学習
- Authors: Haichao Shi, Mandi Luo, Xiao-Yu Zhang, Ran He
- Abstract要約: Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要かつ困難な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らす。
本稿では,新しい相互情報・モダリティコンセンサスネットワーク,すなわちCMInfoNetを提案し,モダリティ不変な同一性の特徴を抽出する。
- 参考スコア(独自算出の注目度): 61.49219876388174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Visible-Infrared person re-identification (VI-ReID) is an important and
challenging task in intelligent video surveillance. Existing methods mainly
focus on learning a shared feature space to reduce the modality discrepancy
between visible and infrared modalities, which still leave two problems
underexplored: information redundancy and modality complementarity. To this
end, properly eliminating the identity-irrelevant information as well as making
up for the modality-specific information are critical and remains a challenging
endeavor. To tackle the above problems, we present a novel mutual information
and modality consensus network, namely CMInfoNet, to extract modality-invariant
identity features with the most representative information and reduce the
redundancies. The key insight of our method is to find an optimal
representation to capture more identity-relevant information and compress the
irrelevant parts by optimizing a mutual information bottleneck trade-off.
Besides, we propose an automatically search strategy to find the most prominent
parts that identify the pedestrians. To eliminate the cross- and intra-modality
variations, we also devise a modality consensus module to align the visible and
infrared modalities for task-specific guidance. Moreover, the global-local
feature representations can also be acquired for key parts discrimination.
Experimental results on four benchmarks, i.e., SYSU-MM01, RegDB,
Occluded-DukeMTMC, Occluded-REID, Partial-REID and Partial\_iLIDS dataset, have
demonstrated the effectiveness of CMInfoNet.
- Abstract(参考訳): Visible-Infrared person re-identification (VI-ReID)は、インテリジェントビデオ監視において重要な課題である。
既存の手法は主に共有特徴空間の学習に重点を置いており、可視光と赤外光の相違を減らし、情報冗長性と相補性という2つの問題をまだ未解決のまま残している。
この目的のために、アイデンティティ非関連情報を適切に排除し、モダリティ特化情報を補うことが重要であり、依然として困難な取り組みである。
上記の課題に対処するため,CMInfoNetという新たな相互情報・モーダリティコンセンサスネットワークを提案し,最も代表的な情報を用いてモーダリティ不変のアイデンティティ特徴を抽出し,冗長性を低減した。
本手法の重要な洞察は,相互情報のボトルネックトレードオフを最適化することにより,よりアイデンティティ関連情報を捕捉し,無関係な部分を圧縮する最適な表現を見つけることである。
さらに,歩行者を識別する最も顕著な部分を見つけるための自動探索戦略を提案する。
クロスモダリティとイントラモダリティのバリエーションを排除するために、タスク固有のガイダンスのための可視性と赤外線モダリティを調整するモダリティコンセンサスモジュールを考案する。
さらに、キー部分の識別のために、グローバルローカルな特徴表現も取得できる。
SYSU-MM01、RegDB、Occluded-DukeMTMC、Occluded-REID、Partial-REID、Partial\_iLIDSの4つのベンチマーク実験の結果、CMInfoNetの有効性が示された。
関連論文リスト
- Dynamic Identity-Guided Attention Network for Visible-Infrared Person Re-identification [17.285526655788274]
Visible-infrared person re-identification (VI-ReID) は、可視光と赤外線の同一性を持つ人物をマッチングすることを目的としている。
既存の方法は一般的に、画像や特徴レベルでのクロスモーダルな違いを橋渡ししようとする。
我々は、動的ID誘導型注意ネットワーク(DIAN)を導入し、アイデンティティ誘導型およびモダリティ一貫性のある埋め込みをマイニングする。
論文 参考訳(メタデータ) (2024-05-21T12:04:56Z) - Transferring Modality-Aware Pedestrian Attentive Learning for
Visible-Infrared Person Re-identification [43.05147831905626]
本稿では,トランスファーリング・モダリティを意識した歩行者注意学習(TMPA)モデルを提案する。
TMPAは、欠落したモダリティ固有の特徴を効率的に補うために歩行者地域に焦点を当てている。
ベンチマークSYSU-MM01とRegDBデータセットを用いて実験を行い,提案したTMPAモデルの有効性を実証した。
論文 参考訳(メタデータ) (2023-12-12T07:15:17Z) - Modality Unifying Network for Visible-Infrared Person Re-Identification [24.186989535051623]
Visible-infrared person re-identification (VI-ReID) は、異種間の大きな相違とクラス内変異のために難しい課題である。
既存の手法は主に、異なるモダリティを同じ特徴空間に埋め込むことで、モダリティ共有表現を学習することに焦点を当てている。
そこで我々は,VI-ReID の頑健な補助モダリティを探索するために,新しいモダリティ統一ネットワーク (MUN) を提案する。
論文 参考訳(メタデータ) (2023-09-12T14:22:22Z) - Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification [90.39454748065558]
体型は、VI-ReIDにとって重要なモダリティシェードの1つである。
本稿では,2つの部分空間におけるモダリティ共有特徴を関連づける形状学習パラダイムを提案する。
SYSU-MM01, RegDB, HITSZ-VCMデータセットを用いた実験により, 本手法の有効性が示された。
論文 参考訳(メタデータ) (2023-04-09T10:22:10Z) - CLIP-Driven Fine-grained Text-Image Person Re-identification [50.94827165464813]
TIReIDは、候補画像のプールから与えられたテキストクエリに対応する画像を取得することを目的としている。
TIReIDにおけるCLIPの強力な知識をフル活用するための,CLIP駆動のきめ細かい情報抽出フレームワーク(CFine)を提案する。
論文 参考訳(メタデータ) (2022-10-19T03:43:12Z) - On Exploring Pose Estimation as an Auxiliary Learning Task for
Visible-Infrared Person Re-identification [66.58450185833479]
本稿では,Pose Estimationを補助学習タスクとして活用して,エンドツーエンドフレームワークにおけるVI-ReIDタスクを支援する。
これら2つのタスクを相互に有利な方法で共同でトレーニングすることにより、高品質なモダリティ共有とID関連の特徴を学習する。
2つのベンチマークVI-ReIDデータセットの実験結果から,提案手法は一定のマージンで最先端の手法を継続的に改善することが示された。
論文 参考訳(メタデータ) (2022-01-11T09:44:00Z) - CMTR: Cross-modality Transformer for Visible-infrared Person
Re-identification [38.96033760300123]
可視赤外人物再識別のための相互モダリティトランスフォーマー法(CMTR)
我々は,モダリティの情報をエンコードするために,トークン埋め込みと融合した新しいモダリティ埋め込みを設計する。
提案するCMTRモデルの性能は,既存のCNN方式をはるかに上回っている。
論文 参考訳(メタデータ) (2021-10-18T03:12:59Z) - Dynamic Dual-Attentive Aggregation Learning for Visible-Infrared Person
Re-Identification [208.1227090864602]
Visible-infrared person re-identification (VI-ReID) は、歩行者検索の課題である。
既存のVI-ReID法は、識別可能性に制限があり、ノイズの多い画像に対して弱いロバスト性を持つグローバル表現を学習する傾向にある。
そこで我々は,VI-ReIDのための動的二段階集合(DDAG)学習法を提案する。
論文 参考訳(メタデータ) (2020-07-18T03:08:13Z) - Cross-modality Person re-identification with Shared-Specific Feature
Transfer [112.60513494602337]
クロスモダリティの人物再識別(cm-ReID)は、インテリジェントビデオ分析において難しいが重要な技術である。
モーダリティ共有型特徴伝達アルゴリズム (cm-SSFT) を提案し, モーダリティ共有型情報とモーダリティ固有特性の両方のポテンシャルについて検討する。
論文 参考訳(メタデータ) (2020-02-28T00:18:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。