論文の概要: xEM: Explainable Entity Matching in Customer 360
- arxiv url: http://arxiv.org/abs/2212.00342v1
- Date: Thu, 1 Dec 2022 08:01:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 16:05:58.092830
- Title: xEM: Explainable Entity Matching in Customer 360
- Title(参考訳): xem: customer 360で説明可能なエンティティマッチング
- Authors: Sukriti Jaitly, Deepa Mariam George, Balaji Ganesan, Muhammad Ameen,
Srinivas Pusapati
- Abstract要約: 説明可能なエンティティマッチング(xEM)システムを提案する。
このデモでは、実装に関わったAI/MLに関するさまざまな考察について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity matching in Customer 360 is the task of determining if multiple
records represent the same real world entity. Entities are typically people,
organizations, locations, and events represented as attributed nodes in a
graph, though they can also be represented as records in relational data. While
probabilistic matching engines and artificial neural network models exist for
this task, explaining entity matching has received less attention. In this
demo, we present our Explainable Entity Matching (xEM) system and discuss the
different AI/ML considerations that went into its implementation.
- Abstract(参考訳): 顧客360におけるエンティティマッチングは、複数のレコードが同じ実世界エンティティを表すかどうかを決定するタスクである。
エンティティは通常、グラフ内の属性ノードとして表される人、組織、場所、イベントであるが、リレーショナルデータのレコードとして表すこともできる。
このタスクには確率的マッチングエンジンと人工ニューラルネットワークモデルが存在するが、エンティティマッチングの説明はあまり注目されていない。
このデモでは、説明可能なエンティティマッチング(xEM)システムを紹介し、その実装におけるAI/MLのさまざまな考察について議論する。
関連論文リスト
- Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Webスケールのビジュアルエンティティ認識は、クリーンで大規模なトレーニングデータがないため、重大な課題を呈している。
本稿では,ラベル検証,メタデータ生成,合理性説明に多モーダル大言語モデル(LLM)を活用することによって,そのようなデータセットをキュレートする新しい手法を提案する。
実験により、この自動キュレートされたデータに基づいてトレーニングされたモデルは、Webスケールの視覚的エンティティ認識タスクで最先端のパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2024-10-31T06:55:24Z) - Entity Alignment with Unlabeled Dangling Cases [49.86384156476041]
本稿では,新しいGNNに基づくダングリング検出とエンティティアライメントフレームワークを提案する。
2つのタスクは同じGNNを共有するが、検出されたダングリングエンティティはアライメントで削除される。
このフレームワークは,表現学習における選択的近傍集約のための設計された実体と関係性注意機構によって特徴付けられる。
論文 参考訳(メタデータ) (2024-03-16T17:21:58Z) - GE-Blender: Graph-Based Knowledge Enhancement for Blender [3.8841367260456487]
見えないエンティティは対話生成タスクに大きな影響を与える可能性がある。
我々は、エンティティノードを抽出してグラフを構築し、コンテキストの表現を強化する。
未確認のエンティティがグラフに存在しない問題を適用するために、名前付きエンティティタグ予測タスクを追加します。
論文 参考訳(メタデータ) (2023-01-30T13:00:20Z) - EventEA: Benchmarking Entity Alignment for Event-centric Knowledge
Graphs [17.27027602556303]
過去の進歩は偏りと不整合性評価によるものであることが示されています。
我々は、イベント中心のKGに基づいて、異種関係と属性を持つ新しいデータセットを構築した。
この問題に対する新たなアプローチとして,エンティティアライメントのためのタイムアウェアリテラルエンコーダを提案する。
論文 参考訳(メタデータ) (2022-11-05T05:34:21Z) - Parallel Instance Query Network for Named Entity Recognition [73.30174490672647]
名前付きエンティティ認識(NER)は自然言語処理の基本課題である。
最近の研究は、名前付きエンティティ認識を読み取り理解タスクとして扱い、エンティティを抽出するためにタイプ固有のクエリを手動で構築している。
本稿では,グローバルかつ学習可能なインスタンスクエリを並列に抽出するParallel Instance Query Network (PIQN)を提案する。
論文 参考訳(メタデータ) (2022-03-20T13:01:25Z) - Dynamic Relation Discovery and Utilization in Multi-Entity Time Series
Forecasting [92.32415130188046]
多くの現実世界のシナリオでは、実体の間に決定的かつ暗黙的な関係が存在する可能性がある。
本稿では,自動グラフ学習(A2GNN)を用いたマルチグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-02-18T11:37:04Z) - EchoEA: Echo Information between Entities and Relations for Entity
Alignment [1.1470070927586016]
本稿では,エンティティ情報を関係に拡散し,エンティティにエコーバックする自己認識機構を活用した新しいフレームワーク Echo Entity Alignment (EchoEA) を提案する。
3つの実世界のクロスランガルデータセットの実験結果は、平均して96%で安定している。
論文 参考訳(メタデータ) (2021-07-07T07:34:21Z) - Interpretable and Low-Resource Entity Matching via Decoupling Feature
Learning from Decision Making [22.755892575582788]
Entity Matchingは、同じ現実世界のオブジェクトを表すエンティティレコードを認識することを目的としている。
異種情報融合(HIF)とキー属性ツリー(KAT)誘導からなる新しいEMフレームワークを提案する。
提案手法は効率が高く,ほとんどの場合SOTA EMモデルより優れている。
論文 参考訳(メタデータ) (2021-06-08T08:27:31Z) - Autoregressive Entity Retrieval [55.38027440347138]
エンティティは、知識の表現と集約の方法の中心にあります。
クエリが与えられたエンティティを検索できることは、エンティティリンクやオープンドメインの質問応答のような知識集約的なタスクに基本となる。
本稿では,自己回帰方式でトークン・バイ・トークンを左から右に生成し,エンティティを検索する最初のシステムであるGENREを提案する。
論文 参考訳(メタデータ) (2020-10-02T10:13:31Z) - Improving Coreference Resolution by Leveraging Entity-Centric Features
with Graph Neural Networks and Second-order Inference [12.115691569576345]
Coreferentの言及は通常、テキスト全体においてはるかに分散しており、エンティティレベルの機能を組み込むのが困難である。
本稿では,エンティティ中心の情報をキャプチャ可能なグラフニューラルネットワークに基づくコア参照分解法を提案する。
グローバル推論アルゴリズムは、クラスタの参照を一貫したグループに最適化する。
論文 参考訳(メタデータ) (2020-09-10T02:22:21Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。