Quantized relativistic time-of-arrival operators for spin-0 particles
and the quantum tunneling time problem
- URL: http://arxiv.org/abs/2212.00343v3
- Date: Thu, 23 Mar 2023 11:39:47 GMT
- Title: Quantized relativistic time-of-arrival operators for spin-0 particles
and the quantum tunneling time problem
- Authors: Philip Caesar Flores and Eric A. Galapon
- Abstract summary: It was shown that the tunneling time of a relativistic spin-0 particle is instantaneous under the condition that the barrier height $V_o$ is less than the rest mass energy.
This implies that instantaneous tunneling is an inherent quantum effect in the context of arrival times.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We provide a full account of our recent report (EPL, 141 (2023) 10001}) which
constructed a quantized relativistic time-of-arrival operator for spin-0
particles using a modified Weyl-ordering rule to calculate the traversal time
across a square barrier. It was shown that the tunneling time of a relativistic
spin-0 particle is instantaneous under the condition that the barrier height
$V_o$ is less than the rest mass energy. This implies that instantaneous
tunneling is an inherent quantum effect in the context of arrival times.
Related papers
- Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Fractional integrodifferential equations and (anti-)hermiticity of time
in a spacetime-symmetric extension of nonrelativistic Quantum Mechanics [0.0]
In Quantum Mechanics, time appears as a classical parameter, meaning that it does not have an uncertainty relation with its canonical conjugate.
We first solve the novel $1/2$-fractional integrodifferential equation for a particle subjected to strong and weak potential limits and obtain an analytical expression for the tunnelling time through a rectangular barrier.
We also show that the expected time of arrival in the tunnelling problem has a form of an energy average of the classical times of arrival plus a quantum contribution.
arXiv Detail & Related papers (2022-12-26T16:52:35Z) - Numerical simulations of quantum clock for measuring tunneling times [0.0]
We numerically study two methods of measuring tunneling times using a quantum clock.
In the conventional method using the Larmor clock, we show that the Larmor tunneling time can be shorter for higher tunneling barriers.
In the second method, we study the probability of a spin-flip of a particle when it is transmitted through a potential barrier.
arXiv Detail & Related papers (2022-07-26T18:18:39Z) - Instantaneous tunneling of relativistic massive spin-0 particles [0.0]
A non-relativistic time-of-arrival operator predicted that tunneling time is instantaneous.
This raises the question on whether instantaneous tunneling time is a consequence of using a non-relativistic theory.
arXiv Detail & Related papers (2022-07-19T03:17:45Z) - Non-inertial quantum clock frames lead to non-Hermitian dynamics [0.0]
We study an accelerating massive quantum particle with an internal clock system.
We show that the evolution from the perspective of the particle's internal clock is non-Hermitian.
arXiv Detail & Related papers (2022-04-08T16:52:24Z) - Quantum backflow of a Dirac fermion on a ring [0.0]
We study the quantum backflow problem of a relativistic charged Dirac fermion constrained to move on a ring of radius $R$.
We compute the probability flux through a generic time interval to show emergence of quantum backflow.
arXiv Detail & Related papers (2022-01-30T21:16:13Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Equivalence of approaches to relational quantum dynamics in relativistic
settings [68.8204255655161]
We show that the trinity' of relational quantum dynamics holds in relativistic settings per frequency superselection sector.
We ascribe the time according to the clock subsystem to a POVM which is covariant with respect to its (quadratic) Hamiltonian.
arXiv Detail & Related papers (2020-07-01T16:12:24Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Quantum time dilation: A new test of relativistic quantum theory [91.3755431537592]
A novel quantum time dilation effect is shown to arise when a clock moves in a quantum superposition of two relativistic velocities.
This effect is argued to be measurable using existing atomic interferometry techniques, potentially offering a new test of relativistic quantum theory.
arXiv Detail & Related papers (2020-04-22T19:26:53Z) - Zitterbewegung and Klein-tunneling phenomena for transient quantum waves [77.34726150561087]
We show that the Zitterbewegung effect manifests itself as a series of quantum beats of the particle density in the long-time limit.
We also find a time-domain where the particle density of the point source is governed by the propagation of a main wavefront.
The relative positions of these wavefronts are used to investigate the time-delay of quantum waves in the Klein-tunneling regime.
arXiv Detail & Related papers (2020-03-09T21:27:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.