論文の概要: A Comprehensive Study on Machine Learning Methods to Increase the
Prediction Accuracy of Classifiers and Reduce the Number of Medical Tests
Required to Diagnose Alzheimer'S Disease
- arxiv url: http://arxiv.org/abs/2212.00414v1
- Date: Thu, 1 Dec 2022 10:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 15:12:05.684268
- Title: A Comprehensive Study on Machine Learning Methods to Increase the
Prediction Accuracy of Classifiers and Reduce the Number of Medical Tests
Required to Diagnose Alzheimer'S Disease
- Title(参考訳): 分類器の予測精度の向上とアルツハイマー病診断に必要な検査回数の削減を目的とした機械学習法に関する包括的研究
- Authors: Md. Sharifur Rahman, Professor Girijesh Prasad
- Abstract要約: 本研究の主な目的は、適切な疾患発見精度を維持しつつ、少ない検査で病気を検出するために分類器を微調整することである。
健常者30名中4名を用いて, 約94%の症例で診断に成功した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Alzheimer's patients gradually lose their ability to think, behave, and
interact with others. Medical history, laboratory tests, daily activities, and
personality changes can all be used to diagnose the disorder. A series of
time-consuming and expensive tests are used to diagnose the illness. The most
effective way to identify Alzheimer's disease is using a Random-forest
classifier in this study, along with various other Machine Learning techniques.
The main goal of this study is to fine-tune the classifier to detect illness
with fewer tests while maintaining a reasonable disease discovery accuracy. We
successfully identified the condition in almost 94% of cases using four of the
thirty frequently utilized indicators.
- Abstract(参考訳): アルツハイマー病患者は徐々に考え、行動し、他人と対話する能力を失っていく。
疾患の診断には、医療史、検査、日々の活動、人格の変化が利用できる。
一連の時間と費用のかかる検査が病気の診断に使用される。
アルツハイマー病を識別する最も効果的な方法は、他の機械学習技術とともにランダムフォレスト分類器を使用することである。
本研究の主な目的は、適切な疾患発見精度を維持しつつ、少ない検査で病気を検出するために分類器を微調整することである。
健常者30名中4名を用いて,約94%の症例で診断に成功した。
関連論文リスト
- Towards Within-Class Variation in Alzheimer's Disease Detection from Spontaneous Speech [60.08015780474457]
アルツハイマー病(AD)の検出は、機械学習の分類モデルを使用する有望な研究領域として浮上している。
我々は、AD検出において、クラス内変異が重要な課題であると考え、ADを持つ個人は認知障害のスペクトルを示す。
本稿では,ソフトターゲット蒸留 (SoTD) とインスタンスレベルの再分散 (InRe) の2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-22T02:06:05Z) - Introducing an ensemble method for the early detection of Alzheimer's disease through the analysis of PET scan images [0.8192907805418583]
本研究は、アルツハイマー病を制御正常(CN)、進行性軽度認知障害(pMCI)、安定性軽度認知障害(sMCI)、アルツハイマー病(AD)の4つのグループに分類する難しい課題について考察する。
いくつかのディープラーニングモデルと伝統的な機械学習モデルがアルツハイマー病の検出に使われている。
その結果、深層学習モデルを用いてMCI患者間の差異を判断すると、全体の平均精度は93.13%、AUCは94.4%となることがわかった。
論文 参考訳(メタデータ) (2024-03-17T16:12:50Z) - Machine Learning Classification of Alzheimer's Disease Stages Using
Cerebrospinal Fluid Biomarkers Alone [0.3277163122167434]
アルツハイマー病の早期診断は、既存の方法では前臨床段階の患者を特定できないため、課題である。
いくつかの研究は、アルツハイマー病の早期診断における髄液バイオマーカー、アミロイドβ1-42、T-タウ、P-タウの可能性を示している。
我々は、脳脊髄液バイオマーカーのみに基づいて、機械学習モデルを用いてアルツハイマー病のさまざまな段階を分類した。
論文 参考訳(メタデータ) (2024-01-02T00:55:10Z) - Deep Learning for Time Series Classification of Parkinson's Disease Eye
Tracking Data [0.0]
我々は、現在最先端のディープラーニングアルゴリズムを用いて、ササード実験による視線追跡データを用いて、パーキンソン病の分類を行う。
モデルが分類課題を学習し、未知の対象に一般化できることが判明した。
論文 参考訳(メタデータ) (2023-11-28T00:03:18Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
鎮静は認知症において高い有病率を有する神経精神医学症状の1つである。
扇動エピソードの検出は、認知症に生きる人々(PLWD)に早期かつタイムリーな介入を提供するのに役立つ。
本研究は,家庭内モニタリングデータを用いてPLWDの動揺リスクを分析するための教師付き学習モデルを提案する。
論文 参考訳(メタデータ) (2021-10-19T11:45:01Z) - ADiag: Graph Neural Network Based Diagnosis of Alzheimer's Disease [0.0]
アルツハイマー病(ad、英: alzheimer's disease)は、世界中で5000万人以上の脳変性疾患である。
現在、認知テストのバッテリーのスコアリング性能の形でのみ定性的なテスト手段が採用されています。
GraphSAGE NetworkとDDP(Dense Differentiable Pooling)解析によりADを診断する新しい定量的手法であるADiagを開発した。
ADiagの予備テストは、83%の堅牢な精度を明らかにし、他の定性的および定量的診断技術を大幅に上回っています。
論文 参考訳(メタデータ) (2021-01-08T06:23:30Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
パーキンソン病は神経疾患であり、高齢者に多い。
伝統的に病気を診断する方法は、一連の活動テストの品質に関する個人的主観的臨床評価に依存している。
そこで本研究では,スマートフォンが収集した生の行動データを用いて,パーキンソン病を予測するための時系列に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2020-09-25T01:50:15Z) - Application of Machine Learning to Predict the Risk of Alzheimer's
Disease: An Accurate and Practical Solution for Early Diagnostics [1.1470070927586016]
アルツハイマー病(AD)は500万人以上のアメリカ人の認知能力を悪化させ、医療システムに多大な負担をかけている。
本稿では,医療画像のない,臨床訪問や検査の少ないAD開発のための機械学習予測モデルを提案する。
本モデルは,2つの顕著な研究結果から,人口統計,バイオマーカー,認知テストデータを用いて訓練し,検証した。
論文 参考訳(メタデータ) (2020-06-02T14:52:51Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
パーキンソン病(英: Parkinson's Disease、PD)は、60歳以上の人口の約1%に影響を与える徐々に進化する神経学的疾患である。
PD症状には、震動、剛性、ブレイキネジアがある。
本稿では,スマートフォン端末から受信したIMU信号に基づいて,PDに関連するトレモラスなエピソードを自動的に識別する手法を提案する。
論文 参考訳(メタデータ) (2020-05-06T09:02:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。