論文の概要: IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn
Response Selection
- arxiv url: http://arxiv.org/abs/2212.00482v2
- Date: Mon, 23 Oct 2023 12:16:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 14:16:21.099677
- Title: IRRGN: An Implicit Relational Reasoning Graph Network for Multi-turn
Response Selection
- Title(参考訳): IRRGN:マルチターン応答選択のための暗黙リレーショナル推論グラフネットワーク
- Authors: Jingcheng Deng, Hengwei Dai, Xuewei Guo, Yuanchen Ju and Wei Peng
- Abstract要約: Graph Networkへのインプシット推論は、発話間の暗黙的な抽出と、発話とオプションの抽出を目的としている。
モデルは、初めて MuTual データセットで人のパフォーマンスを上回ります。
- 参考スコア(独自算出の注目度): 4.471148909362883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of response selection in multi-turn dialogue is to find the best
option from all candidates. In order to improve the reasoning ability of the
model, previous studies pay more attention to using explicit algorithms to
model the dependencies between utterances, which are deterministic, limited and
inflexible. In addition, few studies consider differences between the options
before and after reasoning. In this paper, we propose an Implicit Relational
Reasoning Graph Network to address these issues, which consists of the
Utterance Relational Reasoner (URR) and the Option Dual Comparator (ODC). URR
aims to implicitly extract dependencies between utterances, as well as
utterances and options, and make reasoning with relational graph convolutional
networks. ODC focuses on perceiving the difference between the options through
dual comparison, which can eliminate the interference of the noise options.
Experimental results on two multi-turn dialogue reasoning benchmark datasets
MuTual and MuTual+ show that our method significantly improves the baseline of
four pretrained language models and achieves state-of-the-art performance. The
model surpasses human performance for the first time on the MuTual dataset.
- Abstract(参考訳): マルチターン対話における応答選択のタスクは、すべての候補から最適な選択肢を見つけることである。
モデルの推論能力を向上させるために、これまでの研究では、決定論的で限定的で柔軟性に乏しい発話間の依存関係をモデル化するために、明示的なアルゴリズムを使うことに注意を払っている。
加えて、推論前後の選択肢の違いを考慮する研究はほとんどない。
本稿では,これらの問題に対処するImplicit Relational Reasoning Graph Networkを提案し,Utterance Relational Reasoner (URR) とOption Dual Comparator (ODC) から構成される。
URRは、発話間の依存関係を暗黙的に抽出し、発話とオプションを抽出し、リレーショナルグラフ畳み込みネットワークで推論することを目的としている。
ODCは、ノイズオプションの干渉を排除できる二重比較により、選択肢間の差異を知覚することに焦点を当てている。
2つのマルチターン対話推論ベンチマークデータセットにおける実験結果から,本手法は4つの事前学習言語モデルのベースラインを大幅に改善し,最先端の性能を実現する。
このモデルは、MuTualデータセットで初めて人間のパフォーマンスを上回ります。
関連論文リスト
- Vision-Language Models Can Self-Improve Reasoning via Reflection [20.196406628954303]
CoT(Chain-of-Thought)は,大規模言語モデル(LLM)の推論能力の向上を実証した。
本稿では,自己学習フレームワークR3Vを提案する。このフレームワークは,CoTレーショナル上でのリフレクションにより,モデルの視覚言語推論を反復的に強化する。
提案手法は, 生成した解に対する自己回帰をサポートし, テスト時間計算による性能向上を図っている。
論文 参考訳(メタデータ) (2024-10-30T14:45:00Z) - Coreference-aware Double-channel Attention Network for Multi-party
Dialogue Reading Comprehension [7.353227696624305]
MDRC(Multi-party Dialogue Reading)に挑戦する
MDRCは、複数のインターロケータ間の対話に基づく抽出読解タスクの略である。
推論能力を高めるためのコア推論対応アテンションモデリング手法を提案する。
論文 参考訳(メタデータ) (2023-05-15T05:01:29Z) - Selective Inference for Sparse Multitask Regression with Applications in
Neuroimaging [2.611153304251067]
本稿では、ニューロイメージングにおける一般的なマルチタスク問題に対処するための選択推論フレームワークを提案する。
我々のフレームワークは、選択イベントの洗練に基づいて、新しい推論条件を提供する。
我々は,選択推論を用いたマルチタスク学習により,単一タスク法よりも真の信号をより正確に復元できることをシミュレーションにより示す。
論文 参考訳(メタデータ) (2022-05-27T20:21:20Z) - Visualizing the Relationship Between Encoded Linguistic Information and
Task Performance [53.223789395577796]
本稿では,Pareto Optimalityの観点から,符号化言語情報とタスクパフォーマンスの動的関係について検討する。
我々は、機械翻訳と言語モデリングという2つの一般的なNLPタスクの実験を行い、様々な言語情報とタスクパフォーマンスの関係について検討する。
実験結果から,NLPタスクには構文情報が有用であるのに対して,より構文情報の符号化が必ずしも優れたパフォーマンスをもたらすとは限らないことが示唆された。
論文 参考訳(メタデータ) (2022-03-29T19:03:10Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
我々は、強化学習を通して解決された逐次決定問題(MDP)の文脈における予測列最適化フレームワークについて検討した。
2つの重要な計算課題は、意思決定中心の学習をMDPに適用することである。
論文 参考訳(メタデータ) (2021-06-06T23:53:31Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
グラフ学習に基づく新しい教師なしマルチビュー特徴選択モデルを提案する。
1) 特徴選択過程において, 異なる視点で共有されたコンセンサス類似度グラフが学習される。
各種データセットを用いた実験により,提案手法が最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-11T03:25:25Z) - A Graph Reasoning Network for Multi-turn Response Selection via
Customized Pre-training [11.532734330690584]
本稿では,この問題に対処するグラフ推論ネットワーク(GRN)を提案する。
GRNはまずALBERTに基づく事前トレーニングを行います。
次に、シーケンス推論とグラフ推論構造を備えた統合ネットワーク上でモデルを微調整する。
論文 参考訳(メタデータ) (2020-12-21T03:38:29Z) - Learning an Effective Context-Response Matching Model with
Self-Supervised Tasks for Retrieval-based Dialogues [88.73739515457116]
我々は,次のセッション予測,発話復元,不整合検出,一貫性判定を含む4つの自己教師型タスクを導入する。
我々はPLMに基づく応答選択モデルとこれらの補助タスクをマルチタスク方式で共同で訓練する。
実験結果から,提案した補助的自己教師型タスクは,多ターン応答選択において大きな改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-09-14T08:44:46Z) - Improving Multi-Turn Response Selection Models with Complementary
Last-Utterance Selection by Instance Weighting [84.9716460244444]
我々は、データリソース自体の根底にある相関を利用して、異なる種類の監視信号を導出することを検討する。
2つの公開データセットで広範な実験を行い、両方のデータセットで大幅に改善した。
論文 参考訳(メタデータ) (2020-02-18T06:29:01Z) - Joint Contextual Modeling for ASR Correction and Language Understanding [60.230013453699975]
言語理解(LU)と協調してASR出力の文脈的言語補正を行うマルチタスクニューラルアプローチを提案する。
そこで本研究では,市販のASRおよびLUシステムの誤差率を,少量のドメイン内データを用いてトレーニングしたジョイントモデルと比較して14%削減できることを示した。
論文 参考訳(メタデータ) (2020-01-28T22:09:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。