論文の概要: Privacy-Preserving Data Synthetisation for Secure Information Sharing
- arxiv url: http://arxiv.org/abs/2212.00484v1
- Date: Thu, 1 Dec 2022 13:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 17:33:39.719164
- Title: Privacy-Preserving Data Synthetisation for Secure Information Sharing
- Title(参考訳): セキュアな情報共有のためのプライバシー保護データ合成
- Authors: T\^ania Carvalho and Nuno Moniz and Pedro Faria and Lu\'is Antunes and
Nitesh Chawla
- Abstract要約: PrivateSMOTEは、再識別の最大のリスクにおいて、ケースを保護するための競争力のある手法である。
これは、データユーティリティ損失を最小限に抑えながら、高リスクケースを難読化するために、合成データ生成によって機能する。
生成的対向ネットワークや変分オートエンコーダなど、ベースラインと同等または高いパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 2.362412515574206
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We can protect user data privacy via many approaches, such as statistical
transformation or generative models. However, each of them has critical
drawbacks. On the one hand, creating a transformed data set using conventional
techniques is highly time-consuming. On the other hand, in addition to long
training phases, recent deep learning-based solutions require significant
computational resources. In this paper, we propose PrivateSMOTE, a technique
designed for competitive effectiveness in protecting cases at maximum risk of
re-identification while requiring much less time and computational resources.
It works by synthetic data generation via interpolation to obfuscate high-risk
cases while minimizing data utility loss of the original data. Compared to
multiple conventional and state-of-the-art privacy-preservation methods on 20
data sets, PrivateSMOTE demonstrates competitive results in re-identification
risk. Also, it presents similar or higher predictive performance than the
baselines, including generative adversarial networks and variational
autoencoders, reducing their energy consumption and time requirements by a
minimum factor of 9 and 12, respectively.
- Abstract(参考訳): 統計変換や生成モデルなど,さまざまなアプローチを通じてユーザデータのプライバシを保護することが可能です。
しかし、それぞれに重大な欠点がある。
一方,従来の手法を用いた変換データセットの作成には時間を要する。
一方、長期学習フェーズに加えて、近年のディープラーニングベースのソリューションは、かなりの計算資源を必要とする。
本稿では,より少ない時間と計算資源を必要とせず,再同定のリスクを最大に抑えながらケースを保護できる手法である privatesmote を提案する。
補間による合成データ生成によって高リスクのケースを隠蔽し、元のデータのデータユーティリティ損失を最小限に抑える。
従来と最先端のプライバシ保存手法を20データセットで比較した場合,PrivateSMOTEは再識別リスクの競合結果を示す。
また、生成する対向ネットワークと変分オートエンコーダを含むベースラインと類似または高い予測性能を示し、そのエネルギー消費と時間要求をそれぞれ9と12の最小係数で削減する。
関連論文リスト
- Masked Differential Privacy [64.32494202656801]
本稿では,差分プライバシーを適用した機密領域を制御できる「マスク型差分プライバシー(DP)」という効果的なアプローチを提案する。
提案手法はデータに基づいて選択的に動作し,DPアプリケーションや差分プライバシーをデータサンプル内の他のプライバシー技術と組み合わせることなく,非感性時間領域を定義できる。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Robust Utility-Preserving Text Anonymization Based on Large Language Models [80.5266278002083]
テキストの匿名化は、プライバシーを維持しながら機密データを共有するために重要である。
既存の技術は、大規模言語モデルの再識別攻撃能力の新たな課題に直面している。
本稿では,3つのLCMベースコンポーネント – プライバシ評価器,ユーティリティ評価器,最適化コンポーネント – で構成されるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-16T14:28:56Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Efficient Logistic Regression with Local Differential Privacy [0.0]
モノのインターネット(Internet of Things)デバイスは急速に拡大し、大量のデータを生み出している。
これらのデバイスから収集されたデータを探索する必要性が高まっている。
コラボレーション学習は、モノのインターネット(Internet of Things)設定に戦略的ソリューションを提供すると同時に、データのプライバシに関する一般の懸念も引き起こす。
論文 参考訳(メタデータ) (2022-02-05T22:44:03Z) - Linear Model with Local Differential Privacy [0.225596179391365]
プライバシ保護技術は、さまざまな機関間で分散データを解析するために広く研究されている。
セキュアなマルチパーティ計算は、プライバシ保護のために、高いプライバシレベルで、高コストで広く研究されている。
マトリクスマスキング技術は、悪意のある敵に対するセキュアなスキームを暗号化するために用いられる。
論文 参考訳(メタデータ) (2022-02-05T01:18:00Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
本稿では, 深層生成モデルを用いたデータ・フレームワークを, 差分的にプライベートな方法で提案する。
当社のフレームワークでは、センシティブなデータは、厳格なプライバシ保証をワンショットで行うことで衛生化されています。
提案手法は理論的に性能が保証され,複数のデータセットに対する経験的評価により,提案手法が適切なプライバシーレベルで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-08T18:00:01Z) - Hide-and-Seek Privacy Challenge [88.49671206936259]
NeurIPS 2020 Hide-and-Seek Privacy Challengeは、両方の問題を解決するための新しい2トラックの競争だ。
我々の頭から頭までのフォーマットでは、新しい高品質な集中ケア時系列データセットを用いて、合成データ生成トラック(「ヒッシャー」)と患者再識別トラック(「シーカー」)の参加者が直接対決する。
論文 参考訳(メタデータ) (2020-07-23T15:50:59Z) - P3GM: Private High-Dimensional Data Release via Privacy Preserving
Phased Generative Model [23.91327154831855]
本稿では,プライバシ保護型位相生成モデル(P3GM)を提案する。
P3GMは2段階の学習プロセスを採用し、ノイズに対して堅牢にし、学習効率を向上させる。
最先端の手法と比較して、生成したサンプルはノイズが少なく、データ多様性の観点からも元のデータに近いように見える。
論文 参考訳(メタデータ) (2020-06-22T09:47:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。