論文の概要: Real-Time High-Quality Stereo Matching System on a GPU
- arxiv url: http://arxiv.org/abs/2212.00488v1
- Date: Thu, 1 Dec 2022 13:31:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-02 17:06:45.494283
- Title: Real-Time High-Quality Stereo Matching System on a GPU
- Title(参考訳): GPUを用いたリアルタイム高速ステレオマッチングシステム
- Authors: Qiong Chang, Tsutomu Maruyama
- Abstract要約: 高解像度画像のためのGPU上でのリアルタイムステレオビジョンシステムを提案する。
このシステムは、他の高速システムと比較してエラー率も低い。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a low error rate and real-time stereo vision system
on GPU. Many stereo vision systems on GPU have been proposed to date. In those
systems, the error rates and the processing speed are in trade-off
relationship. We propose a real-time stereo vision system on GPU for the high
resolution images. This system also maintains a low error rate compared to
other fast systems. In our approach, we have implemented the cost aggregation
(CA), cross-checking and median filter on GPU in order to realize the real-time
processing. Its processing speed is 40 fps for 1436x992 pixels images when the
maximum disparity is 145, and its error rate is the lowest among the GPU
systems which are faster than 30 fps.
- Abstract(参考訳): 本稿では,GPU上での低エラー率とリアルタイムステレオビジョンシステムを提案する。
GPU上の多くのステレオビジョンシステムが提案されている。
これらのシステムでは、エラー率と処理速度はトレードオフ関係にある。
高解像度画像のためのGPU上のリアルタイムステレオビジョンシステムを提案する。
このシステムは、他の高速システムと比較してエラー率も低い。
提案手法では,リアルタイム処理を実現するために,GPU上でコストアグリゲーション(CA),クロスチェック,中央値フィルタを実装した。
処理速度は1436x992ピクセルで最大差が145である場合40fpsであり、エラー率は30fpsより高速なGPUシステムの中では最低である。
関連論文リスト
- Stereo Matching in Time: 100+ FPS Video Stereo Matching for Extended
Reality [65.70936336240554]
リアルタイムステレオマッチング(Real-time Stereo Matching)は、屋内3D理解、ビデオパススルー、混合現実感ゲームなど、多くの拡張現実感(XR)アプリケーションのための基盤となるアルゴリズムである。
最大の課題の1つは、ヘッドマウントのVR/ARメガネによってキャプチャされた高品質な屋内ビデオステレオトレーニングデータセットの欠如である。
室内シーンのレンダリングと6-DoF移動VR/ARヘッドマウントディスプレイ(HMD)によるリアルなカメラモーションを含む,新しいステレオ合成データセットを提案する。
これにより既存のアプローチの評価が促進され、屋内拡張現実シナリオのさらなる研究が促進される。
論文 参考訳(メタデータ) (2023-09-08T07:53:58Z) - Efficient stereo matching on embedded GPUs with zero-means cross
correlation [8.446808526407738]
本稿では,Jetson Tx2組込みGPU上でのゼロ平均正規化クロス相関(ZNCC)マッチングコスト計算アルゴリズムの高速化手法を提案する。
本手法では,ZNCCの高速化のために,Zigzag方式で対象画像をスキャンし,隣接する画素に対して1ピクセルの計算を効率的に再利用する。
本システムでは,最大1280x384ピクセル画像のJetson Tx2 GPUにおいて,32fpsのリアルタイム処理速度を示した。
論文 参考訳(メタデータ) (2022-12-01T13:03:38Z) - EVEREST: Efficient Masked Video Autoencoder by Removing Redundant Spatiotemporal Tokens [57.354304637367555]
ビデオ表現学習のための驚くほど効率的なMVAアプローチであるEVERESTを提案する。
リッチなモーション特徴を含むトークンを発見し、事前トレーニングと微調整の両方の間、非形式的なトークンを破棄する。
提案手法は,MVAの計算とメモリ要求を大幅に低減する。
論文 参考訳(メタデータ) (2022-11-19T09:57:01Z) - AxoNN: An asynchronous, message-driven parallel framework for
extreme-scale deep learning [1.5301777464637454]
AxoNNは並列ディープラーニングフレームワークで、非同期とメッセージ駆動の実行を利用して、各GPU上でのニューラルネットワーク操作をスケジュールする。
トレーニング中に定期的にデータをオフロードするスクラッチスペースとしてCPUメモリを使用することで、AxoNNはGPUメモリ使用量を4倍削減することができる。
論文 参考訳(メタデータ) (2021-10-25T14:43:36Z) - Fast Motion Understanding with Spatiotemporal Neural Networks and
Dynamic Vision Sensors [99.94079901071163]
本稿では,高速な動きを推論するための動的視覚センサ(DVS)システムを提案する。
ロボットが15m/s以上の速度で接近する小さな物体に反応するケースを考察する。
我々は,23.4m/sで24.73degの誤差を$theta$,18.4mmの平均離散半径予測誤差,衝突予測誤差に対する25.03%の中央値で移動した玩具ダートについて,本システムの結果を強調した。
論文 参考訳(メタデータ) (2020-11-18T17:55:07Z) - Real-Time Resource Allocation for Tracking Systems [54.802447204921634]
本稿では,人物検出装置を画像の関連部分にのみ適用することにより,コストを大幅に削減するEmphPartiMaxというアルゴリズムを提案する。
PartiMaxは、イメージ内の$n$候補のEmphpixelボックスの$k$を選択するために、パーティクルフィルタの情報を利用する。
本システムでは,画像中のピクセルボックスの10%しか処理しないが,すべてのピクセルボックスを処理する場合,元のトラッキング性能の80%を維持している。
論文 参考訳(メタデータ) (2020-09-21T08:29:05Z) - GPU-Accelerated Primal Learning for Extremely Fast Large-Scale
Classification [10.66048003460524]
ロジスティック回帰や線形サポートベクターマシン(SVM)分類などのL2正規化原始問題を解く最も効率的な方法の1つは、広く使われている信頼領域ニュートンアルゴリズムであるTRONである。
我々は、GPU最適化の法則を用いて、異なる損失と特徴表現に対するTRONトレーニング時間を劇的に短縮できることを示した。
論文 参考訳(メタデータ) (2020-08-08T03:40:27Z) - Faster than FAST: GPU-Accelerated Frontend for High-Speed VIO [46.20949184826173]
この研究は、既存のコンピュータビジョンアルゴリズムを改善するために、効率的な低レベルGPUハードウェア固有の命令の適用性に焦点を当てている。
特に、非マックス抑圧とその後の特徴選択は、全体的な画像処理遅延への顕著な寄与である。
論文 参考訳(メタデータ) (2020-03-30T14:16:23Z) - Efficient Video Semantic Segmentation with Labels Propagation and
Refinement [138.55845680523908]
本稿では,ハイブリッドGPU/CPUを用いた高精細ビデオのリアルタイムセマンティックセマンティックセマンティック化の問題に取り組む。
i) CPU上では、非常に高速な光フロー法であり、ビデオの時間的側面を利用して、あるフレームから次のフレームへ意味情報を伝達するために使用される。
高解像度フレーム(2048 x 1024)を持つ一般的なCityscapesデータセットでは、単一のGPUとCPU上で80から1000Hzの動作ポイントが提案されている。
論文 参考訳(メタデータ) (2019-12-26T11:45:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。