論文の概要: CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
- arxiv url: http://arxiv.org/abs/2212.00621v2
- Date: Mon, 15 Apr 2024 14:39:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-18 03:00:15.015851
- Title: CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
- Title(参考訳): CONDA: 自動運転車の視覚知覚における非教師なしドメイン適応学習
- Authors: Thanh-Dat Truong, Pierce Helton, Ahmed Moustafa, Jackson David Cothren, Khoa Luu,
- Abstract要約: 本稿では,モデルが新しいデータの存在に関して継続的に学習し,適応することを可能にする,連続的教師なしドメイン適応(CONDA)アプローチを提案する。
破滅的な忘れの問題を避け, セグメンテーションモデルの性能を維持するために, 新規な主観的最大損失を提示する。
- 参考スコア(独自算出の注目度): 11.479857808195774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation in visual perception for self-driving cars, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.
- Abstract(参考訳): 教師なし領域適応手法は、自動運転車の視覚知覚においてセマンティックシーンセグメンテーションにおいて顕著な性能を達成しているが、現実のユースケースではこれらの手法は実用的ではない。
実際には、セグメンテーションモデルは、まだ確認されていない新しいデータに遭遇する可能性がある。
また、セグメンテーションモデルの以前のデータトレーニングは、プライバシーの問題によりアクセスできない場合がある。
そこで本研究では,これらの問題に対処するために,モデルが新しいデータの存在に関して継続的に学習し,適応することを可能にする,連続的教師なしドメイン適応(CONDA)アプローチを提案する。
さらに,提案手法は,従来のトレーニングデータにアクセスする必要なしに設計されている。
破滅的な忘れの問題を避け,セグメンテーションモデルの性能を維持するために,予測セグメンテーション分布シフトの制約を課すために,新たなBijective Maximum Likelihood lossを提案する。
連続的教師なし領域適応のベンチマーク実験の結果、提案手法の高度な性能を示した。
関連論文リスト
- Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models [7.742594744641462]
機械学習の目的は、よく訓練されたモデルで残りのデータセットのデータを保存しながら、忘れられたデータから派生した情報を削除することである。
本研究では,アンラーニングプロセス中にラベルを必要とせずに,教師なしのアンラーニングアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-31T00:29:00Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
本研究では,異なるドメインから抽出した汎用ユーザ・イテムインタラクションデータをトレーニングすることで,ユニバーサルインタラクションパターンをキャプチャする汎用レコメンデータを開発する。
実験により,提案モデルにより,ゼロショットと少数ショットの学習環境での推薦性能が大幅に向上する可能性が示唆された。
論文 参考訳(メタデータ) (2023-10-30T03:37:32Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
連続ビデオドメイン適応(CVDA、Continuous Video Domain Adaptation)は、ソースモデルが個々の変更対象ドメインに適応する必要があるシナリオである。
CVDAの課題に対処するため,遺伝子組み換え型自己知識解離(CART)を用いた信頼性保証ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-18T16:40:10Z) - Generative appearance replay for continual unsupervised domain
adaptation [4.623578780480946]
GarDAは生成再生に基づくアプローチで、セグメンテーションモデルをラベルのない新しいドメインに順次適用することができる。
臓器とモダリティの異なる2つのデータセット上でGarDAを評価する。
論文 参考訳(メタデータ) (2023-01-03T17:04:05Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
セマンティックセグメンテーションに特化したトレーニングモデルは、大量のピクセル単位のアノテートデータを必要とする。
教師なしドメイン適応手法は、ラベル付きソースとラベルなしターゲットデータとの間の特徴分布の整合化を目的としている。
以前の研究は、対象データにスパース単一ピクセルアノテーションという形で、人間のインタラクションをこのプロセスに含めようと試みていた。
アクティブな選択による注釈付きポイントを用いた意味的セグメンテーションのための新しいドメイン適応フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-01T01:52:28Z) - Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
Directions [21.035001142156464]
切り離された視覚表現は、変分オートエンコーダ(VAE)のような生成モデルで主に研究されている。
コントラスト学習を用いた正規化手法について検討し、大規模データセットや下流アプリケーションに十分強力なアンタングル表現をもたらす可能性があることを示す。
下流タスクとの絡み合いを評価し、使用する各正規化の利点と欠点を分析し、今後の方向性について議論する。
論文 参考訳(メタデータ) (2021-08-14T21:06:42Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
ソースフリーなドメイン適応型セマンティックセマンティックセグメンテーションのためのカリキュラムスタイルの自己学習手法を提案する。
提案手法は, ソースフリーなセマンティックセグメンテーションタスクにおいて, 合成-実-実-実-実-実-実-非実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実
論文 参考訳(メタデータ) (2021-06-22T10:21:39Z) - Domain segmentation and adjustment for generalized zero-shot learning [22.933463036413624]
ゼロショット学習では、見えないデータを生成モデルで合成することは、見えないクラスと見えないクラスのトレーニングデータの不均衡に対処する最も一般的な方法である。
未確認データの合成は、トレーニングデータの不均衡に起因する領域シフトに対処するための理想的なアプローチではないと我々は主張する。
本稿では,異なる領域における一般化されたゼロショット認識を実現することを提案する。
論文 参考訳(メタデータ) (2020-02-01T15:00:56Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
個人再識別のための教師なし領域適応手法を提案する。
実験結果から,ktCUDA法とSHRED法は,再同定性能において,+5.7 mAPの平均的改善を実現することがわかった。
論文 参考訳(メタデータ) (2020-01-14T17:43:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。