論文の概要: Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
Directions
- arxiv url: http://arxiv.org/abs/2108.06613v1
- Date: Sat, 14 Aug 2021 21:06:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 06:41:59.737061
- Title: Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
Directions
- Title(参考訳): 自動エンコーディングのない教師なしディスタングル:落とし穴と今後の方向性
- Authors: Andrea Burns, Aaron Sarna, Dilip Krishnan, Aaron Maschinot
- Abstract要約: 切り離された視覚表現は、変分オートエンコーダ(VAE)のような生成モデルで主に研究されている。
コントラスト学習を用いた正規化手法について検討し、大規模データセットや下流アプリケーションに十分強力なアンタングル表現をもたらす可能性があることを示す。
下流タスクとの絡み合いを評価し、使用する各正規化の利点と欠点を分析し、今後の方向性について議論する。
- 参考スコア(独自算出の注目度): 21.035001142156464
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disentangled visual representations have largely been studied with generative
models such as Variational AutoEncoders (VAEs). While prior work has focused on
generative methods for disentangled representation learning, these approaches
do not scale to large datasets due to current limitations of generative models.
Instead, we explore regularization methods with contrastive learning, which
could result in disentangled representations that are powerful enough for large
scale datasets and downstream applications. However, we find that unsupervised
disentanglement is difficult to achieve due to optimization and initialization
sensitivity, with trade-offs in task performance. We evaluate disentanglement
with downstream tasks, analyze the benefits and disadvantages of each
regularization used, and discuss future directions.
- Abstract(参考訳): 切り離された視覚表現は、変分オートエンコーダ(VAE)のような生成モデルで主に研究されている。
先行研究は、異種表現学習のための生成法に焦点を当ててきたが、生成モデルの現在の制限のため、これらのアプローチは大きなデータセットにはスケールしない。
代わりに、コントラスト学習を用いた正規化手法について検討し、大規模なデータセットや下流アプリケーションに十分強力なアンタングル表現をもたらす可能性がある。
しかし,タスク性能のトレードオフにより,最適化や初期化感度のため,教師なしの絡み合いが困難であることが判明した。
下流タスクとの絡み合いを評価し,使用する各規則化の利点と欠点を分析し,今後の方向性について考察する。
関連論文リスト
- Unsupervised Model Diagnosis [49.36194740479798]
本稿では,ユーザガイドを使わずに,意味論的対実的説明を生成するために,Unsupervised Model Diagnosis (UMO)を提案する。
提案手法は意味論における変化を特定し可視化し,その変化を広範囲なテキストソースの属性と照合する。
論文 参考訳(メタデータ) (2024-10-08T17:59:03Z) - Complementary Learning for Real-World Model Failure Detection [15.779651238128562]
そこでは、異なる訓練パラダイムから学習特性を用いてモデルエラーを検出する。
我々は,制御的かつ自己管理的な方法で,点群における意味的および予測的動作ラベルを学習することにより,我々のアプローチを実証する。
大規模定性解析を行い、ライダー点雲にラベル付き異常を持つ最初のデータセットであるLidarCODAを提示する。
論文 参考訳(メタデータ) (2024-07-19T13:36:35Z) - Hub-VAE: Unsupervised Hub-based Regularization of Variational
Autoencoders [11.252245456934348]
我々は、ハブベースの先行とハブベースのコントラスト損失を混合した非教師付きデータ駆動型潜在空間の正規化を提案する。
本アルゴリズムは,組込み空間におけるクラスタ分離性,高精度なデータ再構成と生成を実現する。
論文 参考訳(メタデータ) (2022-11-18T19:12:15Z) - Self-Supervised Learning via Maximum Entropy Coding [57.56570417545023]
本稿では,表現の構造を明示的に最適化する原理的目的として,最大エントロピー符号化(MEC)を提案する。
MECは、特定のプリテキストタスクに基づいて、以前のメソッドよりもより一般化可能な表現を学ぶ。
ImageNetリニアプローブだけでなく、半教師付き分類、オブジェクト検出、インスタンスセグメンテーション、オブジェクトトラッキングなど、さまざまなダウンストリームタスクに対して一貫して最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2022-10-20T17:58:30Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
遠隔センシング領域における自己教師付き学習は、容易に利用可能なラベル付きデータを活用するために応用されている。
本稿では,ラベル効率のレンズを用いた自己教師型視覚表現学習について検討する。
論文 参考訳(メタデータ) (2022-10-13T06:54:13Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
観察ifoからの模倣学習において、学習エージェントは、実演者の生成した制御信号にアクセスせずに、実演行動の観察のみを用いて実演エージェントを模倣しようとする。
近年、逆模倣学習に基づく手法は、ifO問題に対する最先端のパフォーマンスをもたらすが、データ非効率でモデルなしの強化学習アルゴリズムに依存するため、サンプルの複雑さに悩まされることが多い。
この問題は、サンプルの収集が時間、エネルギー、およびリスクの面で高いコストを被る可能性がある現実世界の設定に展開することは非現実的です。
よりデータ効率の高いifOアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-31T23:46:32Z) - Adversarial Examples for Unsupervised Machine Learning Models [71.81480647638529]
回避予測を引き起こすアドリラルな例は、機械学習モデルの堅牢性を評価し改善するために広く利用されている。
教師なしモデルに対する逆例生成の枠組みを提案し,データ拡張への新たな応用を実証する。
論文 参考訳(メタデータ) (2021-03-02T17:47:58Z) - MAIN: Multihead-Attention Imputation Networks [4.427447378048202]
本稿では,任意のモデルに適用可能なマルチヘッドアテンションに基づく新しいメカニズムを提案する。
提案手法は、下流タスクの性能を向上させるために、入力データの欠落パターンを誘導的にモデル化する。
論文 参考訳(メタデータ) (2021-02-10T13:50:02Z) - A Sober Look at the Unsupervised Learning of Disentangled
Representations and their Evaluation [63.042651834453544]
モデルとデータの両方に帰納的バイアスを伴わずに,非教師なしの非教師付き表現学習は不可能であることを示す。
異なる手法は、対応する損失によって「強化」された特性を効果的に強制するが、よく見分けられたモデルは監督なしでは特定できないように見える。
以上の結果から,遠絡学習における今後の研究は,帰納的バイアスと(単純に)監督の役割を明確化すべきであることが示唆された。
論文 参考訳(メタデータ) (2020-10-27T10:17:15Z) - Manifolds for Unsupervised Visual Anomaly Detection [79.22051549519989]
トレーニングで必ずしも異常に遭遇しない教師なしの学習方法は、非常に有用です。
ジャイロプレーン層を用いた立体投影による超球形変分オートエンコーダ(VAE)を開発した。
工業用AIシナリオにおける実世界の実用性を実証し、精密製造および検査における視覚異常ベンチマークの最先端結果を示す。
論文 参考訳(メタデータ) (2020-06-19T20:41:58Z) - Supervised Visualization for Data Exploration [9.742277703732187]
本稿では,無作為な森林確率と拡散に基づく次元減少に基づく新しい可視化手法について述べる。
我々のアプローチはノイズやパラメータのチューニングに頑健であり、データ探索のための信頼性の高い可視化を作成しながら、簡単に使用できる。
論文 参考訳(メタデータ) (2020-06-15T19:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。