CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
- URL: http://arxiv.org/abs/2212.00621v2
- Date: Mon, 15 Apr 2024 14:39:19 GMT
- Title: CONDA: Continual Unsupervised Domain Adaptation Learning in Visual Perception for Self-Driving Cars
- Authors: Thanh-Dat Truong, Pierce Helton, Ahmed Moustafa, Jackson David Cothren, Khoa Luu,
- Abstract summary: We propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data.
To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss.
- Score: 11.479857808195774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although unsupervised domain adaptation methods have achieved remarkable performance in semantic scene segmentation in visual perception for self-driving cars, these approaches remain impractical in real-world use cases. In practice, the segmentation models may encounter new data that have not been seen yet. Also, the previous data training of segmentation models may be inaccessible due to privacy problems. Therefore, to address these problems, in this work, we propose a Continual Unsupervised Domain Adaptation (CONDA) approach that allows the model to continuously learn and adapt with respect to the presence of the new data. Moreover, our proposed approach is designed without the requirement of accessing previous training data. To avoid the catastrophic forgetting problem and maintain the performance of the segmentation models, we present a novel Bijective Maximum Likelihood loss to impose the constraint of predicted segmentation distribution shifts. The experimental results on the benchmark of continual unsupervised domain adaptation have shown the advanced performance of the proposed CONDA method.
Related papers
- Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models [7.742594744641462]
Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model.
We propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process.
arXiv Detail & Related papers (2024-03-31T00:29:00Z) - Pre-trained Recommender Systems: A Causal Debiasing Perspective [19.712997823535066]
We develop a generic recommender that captures universal interaction patterns by training on generic user-item interaction data extracted from different domains.
Our empirical studies show that the proposed model could significantly improve the recommendation performance in zero- and few-shot learning settings.
arXiv Detail & Related papers (2023-10-30T03:37:32Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
Continuous Video Domain Adaptation (CVDA) is a scenario where a source model is required to adapt to a series of individually available changing target domains.
We propose a Confidence-Attentive network with geneRalization enhanced self-knowledge disTillation (CART) to address the challenge in CVDA.
arXiv Detail & Related papers (2023-03-18T16:40:10Z) - Generative appearance replay for continual unsupervised domain
adaptation [4.623578780480946]
GarDA is a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data.
We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
arXiv Detail & Related papers (2023-01-03T17:04:05Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
offline reinforcement learning aims to train a policy on a pre-recorded and fixed dataset without any additional environment interactions.
We build upon recent works on learning policies in latent action spaces and use a special form of Normalizing Flows for constructing a generative model.
We evaluate our method on various locomotion and navigation tasks, demonstrating that our approach outperforms recently proposed algorithms.
arXiv Detail & Related papers (2022-11-20T21:57:10Z) - Labeling Where Adapting Fails: Cross-Domain Semantic Segmentation with
Point Supervision via Active Selection [81.703478548177]
Training models dedicated to semantic segmentation require a large amount of pixel-wise annotated data.
Unsupervised domain adaptation approaches aim at aligning the feature distributions between the labeled source and the unlabeled target data.
Previous works attempted to include human interactions in this process under the form of sparse single-pixel annotations in the target data.
We propose a new domain adaptation framework for semantic segmentation with annotated points via active selection.
arXiv Detail & Related papers (2022-06-01T01:52:28Z) - Unsupervised Disentanglement without Autoencoding: Pitfalls and Future
Directions [21.035001142156464]
Disentangled visual representations have largely been studied with generative models such as Variational AutoEncoders (VAEs)
We explore regularization methods with contrastive learning, which could result in disentangled representations powerful enough for large scale datasets and downstream applications.
We evaluate disentanglement with downstream tasks, analyze the benefits and disadvantages of each regularization used, and discuss future directions.
arXiv Detail & Related papers (2021-08-14T21:06:42Z) - A Curriculum-style Self-training Approach for Source-Free Semantic Segmentation [91.13472029666312]
We propose a curriculum-style self-training approach for source-free domain adaptive semantic segmentation.
Our method yields state-of-the-art performance on source-free semantic segmentation tasks for both synthetic-to-real and adverse conditions.
arXiv Detail & Related papers (2021-06-22T10:21:39Z) - Domain segmentation and adjustment for generalized zero-shot learning [22.933463036413624]
In zero-shot learning, synthesizing unseen data with generative models has been the most popular method to address the imbalance of training data between seen and unseen classes.
We argue that synthesizing unseen data may not be an ideal approach for addressing the domain shift caused by the imbalance of the training data.
In this paper, we propose to realize the generalized zero-shot recognition in different domains.
arXiv Detail & Related papers (2020-02-01T15:00:56Z) - Unsupervised Domain Adaptation in Person re-ID via k-Reciprocal
Clustering and Large-Scale Heterogeneous Environment Synthesis [76.46004354572956]
We introduce an unsupervised domain adaptation approach for person re-identification.
Experimental results show that the proposed ktCUDA and SHRED approach achieves an average improvement of +5.7 mAP in re-identification performance.
arXiv Detail & Related papers (2020-01-14T17:43:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.