Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models
- URL: http://arxiv.org/abs/2404.00506v2
- Date: Tue, 7 May 2024 16:06:50 GMT
- Title: Label-Agnostic Forgetting: A Supervision-Free Unlearning in Deep Models
- Authors: Shaofei Shen, Chenhao Zhang, Yawen Zhao, Alina Bialkowski, Weitong Tony Chen, Miao Xu,
- Abstract summary: Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model.
We propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process.
- Score: 7.742594744641462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine unlearning aims to remove information derived from forgotten data while preserving that of the remaining dataset in a well-trained model. With the increasing emphasis on data privacy, several approaches to machine unlearning have emerged. However, these methods typically rely on complete supervision throughout the unlearning process. Unfortunately, obtaining such supervision, whether for the forgetting or remaining data, can be impractical due to the substantial cost associated with annotating real-world datasets. This challenge prompts us to propose a supervision-free unlearning approach that operates without the need for labels during the unlearning process. Specifically, we introduce a variational approach to approximate the distribution of representations for the remaining data. Leveraging this approximation, we adapt the original model to eliminate information from the forgotten data at the representation level. To further address the issue of lacking supervision information, which hinders alignment with ground truth, we introduce a contrastive loss to facilitate the matching of representations between the remaining data and those of the original model, thus preserving predictive performance. Experimental results across various unlearning tasks demonstrate the effectiveness of our proposed method, Label-Agnostic Forgetting (LAF) without using any labels, which achieves comparable performance to state-of-the-art methods that rely on full supervision information. Furthermore, our approach excels in semi-supervised scenarios, leveraging limited supervision information to outperform fully supervised baselines. This work not only showcases the viability of supervision-free unlearning in deep models but also opens up a new possibility for future research in unlearning at the representation level.
Related papers
- TCGU: Data-centric Graph Unlearning based on Transferable Condensation [36.670771080732486]
Transferable Condensation Graph Unlearning (TCGU) is a data-centric solution to zero-glance graph unlearning.
We show that TCGU can achieve superior performance in terms of model utility, unlearning efficiency, and unlearning efficacy than existing GU methods.
arXiv Detail & Related papers (2024-10-09T02:14:40Z) - Partially Blinded Unlearning: Class Unlearning for Deep Networks a Bayesian Perspective [4.31734012105466]
Machine Unlearning is the process of selectively discarding information designated to specific sets or classes of data from a pre-trained model.
We propose a methodology tailored for the purposeful elimination of information linked to a specific class of data from a pre-trained classification network.
Our novel approach, termed textbfPartially-Blinded Unlearning (PBU), surpasses existing state-of-the-art class unlearning methods, demonstrating superior effectiveness.
arXiv Detail & Related papers (2024-03-24T17:33:22Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
Key challenge in unlearning is forgetting the necessary data in a timely manner, while preserving model performance.
In this work, we address the zero-shot unlearning scenario, whereby an unlearning algorithm must be able to remove data given only a trained model and the data to be forgotten.
We derive a simple but principled zero-shot unlearning method based on the geometry of the model.
arXiv Detail & Related papers (2024-02-02T13:33:30Z) - Weakly Supervised Video Individual CountingWeakly Supervised Video
Individual Counting [126.75545291243142]
Video Individual Counting aims to predict the number of unique individuals in a single video.
We introduce a weakly supervised VIC task, wherein trajectory labels are not provided.
In doing so, we devise an end-to-end trainable soft contrastive loss to drive the network to distinguish inflow, outflow, and the remaining.
arXiv Detail & Related papers (2023-12-10T16:12:13Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Vertical Machine Unlearning: Selectively Removing Sensitive Information
From Latent Feature Space [21.8933559159369]
We investigate a vertical unlearning mode, aiming at removing only sensitive information from latent feature space.
We introduce intuitive and formal definitions for this unlearning and show its relationship with existing horizontal unlearning.
We propose an approximation with an upper bound to estimate it, with rigorous theoretical analysis.
arXiv Detail & Related papers (2022-02-27T05:25:15Z) - Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain
Adaptation [87.60688582088194]
We propose a novel Self-Supervised Noisy Label Learning method.
Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin.
arXiv Detail & Related papers (2021-02-23T10:51:45Z) - Robust Disentanglement of a Few Factors at a Time [5.156484100374058]
We introduce population-based training (PBT) for improving consistency in training variational autoencoders (VAEs)
We then use Unsupervised Disentanglement Ranking (UDR) as an unsupervised to score models in our PBT-VAE training and show how models trained this way tend to consistently disentangle only a subset of the generative factors.
We show striking improvement in state-of-the-art unsupervised disentanglement performance and robustness across multiple datasets and metrics.
arXiv Detail & Related papers (2020-10-26T12:34:23Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Leveraging Semi-Supervised Learning for Fairness using Neural Networks [49.604038072384995]
There has been a growing concern about the fairness of decision-making systems based on machine learning.
In this paper, we propose a semi-supervised algorithm using neural networks benefiting from unlabeled data.
The proposed model, called SSFair, exploits the information in the unlabeled data to mitigate the bias in the training data.
arXiv Detail & Related papers (2019-12-31T09:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.