論文の概要: On-device Training: A First Overview on Existing Systems
- arxiv url: http://arxiv.org/abs/2212.00824v1
- Date: Thu, 1 Dec 2022 19:22:29 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 17:06:28.018054
- Title: On-device Training: A First Overview on Existing Systems
- Title(参考訳): オンデバイストレーニング: 既存システムに関する最初の概要
- Authors: Shuai Zhu, Thiemo Voigt, JeongGil Ko, Fatemeh Rahimian
- Abstract要約: クラウド上でデータを共有することなく、ローカルデータ上でのトレーニングモデルを可能にするため、デバイス上でのトレーニングがますます関心を集めている。
我々は、システムの観点からデバイス上でのトレーニングに関する最初の調査を提供するために、最先端のシステム研究を要約し、分析する。
- 参考スコア(独自算出の注目度): 8.0653715405809
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent breakthroughs in machine learning (ML) and deep learning (DL) have
enabled many new capabilities across plenty of application domains. While most
existing machine learning models require large memory and computing power,
efforts have been made to deploy some models on resource-constrained devices as
well. There are several systems that perform inference on the device, while
direct training on the device still remains a challenge. On-device training,
however, is attracting more and more interest because: (1) it enables training
models on local data without needing to share data over the cloud, thus
enabling privacy preserving computation by design; (2) models can be refined on
devices to provide personalized services and cope with model drift in order to
adapt to the changes of the real-world environment; and (3) it enables the
deployment of models in remote, hardly accessible locations or places without
stable internet connectivity. We summarize and analyze the-state-of-art systems
research to provide the first survey of on-device training from a systems
perspective.
- Abstract(参考訳): 最近の機械学習(ML)とディープラーニング(DL)のブレークスルーにより、多くのアプリケーションドメインにまたがる多くの新機能が実現された。
既存の機械学習モデルは、大きなメモリと計算能力を必要とするが、いくつかのモデルをリソースに制約されたデバイスにデプロイする努力も行われている。
デバイス上で推論を行うシステムはいくつかあるが、デバイス上での直接トレーニングは依然として課題である。
On-device training, however, is attracting more and more interest because: (1) it enables training models on local data without needing to share data over the cloud, thus enabling privacy preserving computation by design; (2) models can be refined on devices to provide personalized services and cope with model drift in order to adapt to the changes of the real-world environment; and (3) it enables the deployment of models in remote, hardly accessible locations or places without stable internet connectivity.
我々は,最先端システム研究を要約して分析し,システムの観点からデバイス上でのトレーニングに関する最初の調査を行う。
関連論文リスト
- On-Device Language Models: A Comprehensive Review [26.759861320845467]
資源制約のあるデバイスに計算コストの高い大規模言語モデルをデプロイする際の課題について検討する。
論文は、デバイス上での言語モデル、その効率的なアーキテクチャ、および最先端の圧縮技術について考察する。
主要モバイルメーカーによるオンデバイス言語モデルのケーススタディは、実世界の応用と潜在的な利益を実証している。
論文 参考訳(メタデータ) (2024-08-26T03:33:36Z) - MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases [81.70591346986582]
モバイル端末上でのLarge Language Models(LLM)とLarge Multimodal Models(LMM)を評価するためのベンチマークフレームワークであるMobileAIBenchを紹介する。
MobileAIBenchは、さまざまなサイズ、量子化レベル、タスクにわたるモデルを評価し、実際のデバイス上でのレイテンシとリソース消費を測定する。
論文 参考訳(メタデータ) (2024-06-12T22:58:12Z) - Beimingwu: A Learnware Dock System [42.54363998206648]
本稿では,Beimingwuについて述べる。Beimingwuはオープンソースのラーニングウェアドックシステムであり,将来のラーニングウェアパラダイムの研究に基盤的支援を提供する。
このシステムは、統合アーキテクチャとエンジン設計のおかげで、新しいユーザータスクのためのモデル開発を大幅に効率化する。
特に、生データのセキュリティを損なうことなく、限られたデータと機械学習に関する最小限の専門知識を持つユーザでも、これは可能だ。
論文 参考訳(メタデータ) (2024-01-24T09:27:51Z) - A Survey of Serverless Machine Learning Model Inference [0.0]
ジェネレーティブAI、コンピュータビジョン、自然言語処理は、AIモデルをさまざまな製品に統合するきっかけとなった。
本調査は,大規模ディープラーニングサービスシステムにおける新たな課題と最適化の機会を要約し,分類することを目的としている。
論文 参考訳(メタデータ) (2023-11-22T18:46:05Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
ディープラーニングの分野は特にコンピュータビジョン(CV)、自然言語処理(NLP)、音声などにおいて大きな進歩を遂げている。
大量のデータに基づいてトレーニングされた大規模なモデルを使用することは、実用的なアプリケーションにとって大きな可能性を秘めている。
計算能力の需要が増大する中で、ディープラーニングモデルの訓練の加速技術に関する包括的な要約が期待されている。
論文 参考訳(メタデータ) (2023-04-07T11:13:23Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Challenges and Obstacles Towards Deploying Deep Learning Models on
Mobile Devices [1.422288795020666]
ディープラーニングモデルは、多くの高レベルのジェネリックフレームワークとライブラリを使って開発されている。
モバイルデバイス上でモデルを実行するには、ハードウェアによる最適化が必要です。
本稿では,モバイルデバイスにディープラーニングモデルをデプロイするための既存の課題,障害,実践的ソリューションについて述べる。
論文 参考訳(メタデータ) (2021-05-06T12:40:28Z) - Model-Based Deep Learning [155.063817656602]
信号処理、通信、制御は伝統的に古典的な統計モデリング技術に依存している。
ディープニューラルネットワーク(DNN)は、データから操作を学ぶ汎用アーキテクチャを使用し、優れたパフォーマンスを示す。
私たちは、原理数学モデルとデータ駆動システムを組み合わせて両方のアプローチの利点を享受するハイブリッド技術に興味があります。
論文 参考訳(メタデータ) (2020-12-15T16:29:49Z) - LIMITS: Lightweight Machine Learning for IoT Systems with Resource
Limitations [8.647853543335662]
我々は、IoTシステムのための新しいオープンソースのフレームワークLIghtweight Machine Learning(LIMITS)を紹介する。
LIMITSは、ターゲットIoTプラットフォームの実際のコンパイルツールチェーンを明示的に考慮した、プラットフォーム・イン・ザ・ループのアプローチを適用している。
LIMITSを携帯電話データレート予測と無線車種分類に応用し,その妥当性を検証した。
論文 参考訳(メタデータ) (2020-01-28T06:34:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。