Are the ground states of randomly interacting bosons random?
- URL: http://arxiv.org/abs/2212.00848v1
- Date: Thu, 1 Dec 2022 20:08:38 GMT
- Title: Are the ground states of randomly interacting bosons random?
- Authors: Charles White, Alexander Volya, Declan Mulhall, and Vladimir
Zelevinsky
- Abstract summary: We present a systematic study of many-boson systems governed by random interactions.
Our findings show that ground states of randomly interacting bosons are not random, being dominated by a few collective configurations containing condensates of clusters.
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bosonic degrees of freedom and their emergence as a part of complex quantum
many-body dynamics, symmetries, collective behavior, clustering and phase
transitions play an important role in modern studies of quantum systems. In
this work we present a systematic study of many-boson systems governed by
random interactions. Our findings show that ground states of randomly
interacting bosons are not random, being dominated by a few collective
configurations containing condensates of clusters.
Related papers
- Quantum walks and correlated dynamics in an interacting synthetic Rydberg lattice [5.855209052942117]
Coherent dynamics of interacting quantum particles plays a central role in the study of strongly correlated quantum matter.
We present a synthetic landscape on which to control and observe coherent and correlated dynamics.
This work establishes synthetic Rydberg lattices of interacting atom arrays as a promising platform for programmable quantum many-body dynamics.
arXiv Detail & Related papers (2024-03-31T16:56:51Z) - Universal fluctuations and noise learning from Hilbert-space ergodicity [3.55103790558995]
Recently a quantum notion of ergodicity has been proposed, namely that isolated, global quantum states uniformly explore their available state space.
Here we observe signatures of this process with an experimental Rydberg quantum simulator and various numerical models.
We then consider the case of an open system interacting noisily with an external environment.
arXiv Detail & Related papers (2024-03-18T17:09:05Z) - Suppression of Bogoliubov momentum pairing and emergence of non-Gaussian correlations in ultracold interacting Bose gases [0.0]
Strongly correlated quantum matter possesses properties that cannot be understood in terms of linear fluctuations and free quasi-particles.
Quantum fluctuations in these systems are indeed large and generically exhibit non-Gaussian statistics.
We experimentally study interacting Bose gases from the weakly to the strongly interacting regime through single-atom-resolved correlations in momentum space.
arXiv Detail & Related papers (2024-01-27T08:17:15Z) - Quantum jumps in driven-dissipative disordered many-body systems [0.874967598360817]
We introduce a deformation of the Lindblad master equation that interpolates between the standard Lindblad and the no-jump non-Hermitian dynamics of open quantum systems.
We show that reducing the number of quantum jumps, achievable through realistic postselection protocols, can promote the emergence of the localized phase.
arXiv Detail & Related papers (2023-12-28T19:00:00Z) - Entanglement statistics of randomly interacting spins [62.997667081978825]
Entanglement depends on the underlying topology of the interaction among the qubits.
We investigate the entanglement in the ground state of systems comprising two and three qubits with random interactions.
arXiv Detail & Related papers (2023-07-18T23:58:32Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Non-trivial dynamic regimes of small (nano-scale) quantum systems [0.0]
We show that system behavior becomes non-trivial and manifests a sort of transitions between regular and chaotic dynamics.
We generalize the model to include into consideration the coupling of the initially prepared single state to system phonon excitations.
We anticipate that the basic ideas inspiring our work can be applied to a large variety of interesting for the applications nano-systems.
arXiv Detail & Related papers (2021-05-24T11:19:19Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.