Quantum jumps in driven-dissipative disordered many-body systems
- URL: http://arxiv.org/abs/2312.17311v2
- Date: Tue, 7 May 2024 08:11:47 GMT
- Title: Quantum jumps in driven-dissipative disordered many-body systems
- Authors: Sparsh Gupta, Hari Kumar Yadalam, Manas Kulkarni, Camille Aron,
- Abstract summary: We introduce a deformation of the Lindblad master equation that interpolates between the standard Lindblad and the no-jump non-Hermitian dynamics of open quantum systems.
We show that reducing the number of quantum jumps, achievable through realistic postselection protocols, can promote the emergence of the localized phase.
- Score: 0.874967598360817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We discuss how quantum jumps affect localized regimes in driven-dissipative disordered many-body systems featuring a localization transition. We introduce a deformation of the Lindblad master equation that interpolates between the standard Lindblad and the no-jump non-Hermitian dynamics of open quantum systems. As a platform, we use a disordered chain of hard-core bosons with nearest-neighbor interactions and subject to incoherent drive and dissipation at alternate sites. We probe both the statistics of complex eigenvalues of the deformed Liouvillian and dynamical observables of physical relevance. We show that reducing the number of quantum jumps, achievable through realistic postselection protocols, can promote the emergence of the localized phase. Our findings are based on exact diagonalization and time-dependent matrix-product states techniques.
Related papers
- Exploring Dynamics of Open Quantum Systems in Naturally Inaccessible Regimes [0.0]
We generalize the Lindblad master equation via postselection to a generalized Liouvillian formalism.
Our formalism provides a parameter space with regimes inaccessible in naturally-occurring systems.
This generalized Liouvillian formalism offers opportunities to explore novel phenomena and quantum technologies.
arXiv Detail & Related papers (2025-03-10T05:52:02Z) - Tailoring transport in quantum spin chains via disorder and collisions [41.94295877935867]
We investigate the interplay of disorder and space-time heterogeneous collisional noise in shaping the transport dynamics of anisotropic XXZ spin chain.
We find that space homogeneous collisions occurring at low rates favor the shaping of regions where the localization degree sets in the form of subsequent plateaus.
Our findings can be applied to design stroboscopic protocols where sequences of transport and localization can be tailored.
arXiv Detail & Related papers (2025-02-21T15:11:58Z) - Separability Lindblad equation for dynamical open-system entanglement [0.0]
We put forth a new class of nonlinear quantum master equations in Lindblad form that unambiguously identify dynamical entanglement in open quantum systems.
This separability Lindblad equation restricts quantum trajectories to classically correlated states only.
Our results allow to benchmark the engineering of entangled states through dissipation.
arXiv Detail & Related papers (2024-12-11T19:00:08Z) - Topological transitions in quantum jump dynamics: Hidden exceptional points [45.58759752275849]
Phenomena associated with exceptional points (EPs) have been extensively studied in relation to superconducting circuits.
We consider a monitored three level system and find multiple EPs in the Lindbladian eigenvalues considered as functions of a counting field.
We identify dynamical observables affected by these transitions and demonstrate how the underlying topology can be recovered from experimentally measured quantum jump distributions.
arXiv Detail & Related papers (2024-08-09T18:00:02Z) - Designing open quantum systems with known steady states: Davies generators and beyond [0.9903198600681908]
We provide a systematic framework for constructing generic models of nonequilibrium quantum dynamics with a target stationary (mixed) state.
We focus on Gibbs states of stabilizer Hamiltonians, identifying local Lindbladians compatible therewith by constraining the rates of dissipative and unitary processes.
Our methods also reveal new models of quantum dynamics: for example, we provide a "measurement-induced phase transition" where measurable two-point functions exhibit critical (power-law) scaling with distance at a critical ratio of the transverse field and rate of measurement and feedback.
arXiv Detail & Related papers (2024-04-22T19:21:34Z) - Variational method for learning Quantum Channels via Stinespring Dilation on neutral atom systems [0.0]
We propose a method to approximate an arbitrary target quantum channel by variationally constructing equivalent unitary operations on an extended system.
We also present an experimentally feasible approach to extrapolate the quantum channel in discrete time steps beyond the period covered by the training data.
arXiv Detail & Related papers (2023-09-19T13:06:44Z) - Hilbert Space Fragmentation in Open Quantum Systems [0.7412445894287709]
We investigate the phenomenon of Hilbert space fragmentation (HSF) in open quantum systems.
We find that it can stabilize highly entangled steady states.
arXiv Detail & Related papers (2023-05-05T18:00:06Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Unification of Random Dynamical Decoupling and the Quantum Zeno Effect [68.8204255655161]
We show that the system dynamics under random dynamical decoupling converges to a unitary with a decoupling error that characteristically depends on the convergence speed of the Zeno limit.
This reveals a unification of the random dynamical decoupling and the quantum Zeno effect.
arXiv Detail & Related papers (2021-12-08T11:41:38Z) - Probing quantum chaos in multipartite systems [4.771483851099131]
We show that the contribution of the subsystems to the global behavior can be revealed by probing the full counting statistics.
We show that signatures of quantum chaos in the time domain dictate a dip-ramp-plateau structure in the characteristic function.
Global quantum chaos can be suppressed at strong coupling.
arXiv Detail & Related papers (2021-11-24T13:06:25Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.