QFF: Quantized Fourier Features for Neural Field Representations
- URL: http://arxiv.org/abs/2212.00914v1
- Date: Fri, 2 Dec 2022 00:11:22 GMT
- Title: QFF: Quantized Fourier Features for Neural Field Representations
- Authors: Jae Yong Lee, Yuqun Wu, Chuhang Zou, Shenlong Wang, Derek Hoiem
- Abstract summary: We show that using Quantized Fourier Features (QFF) can result in smaller model size, faster training, and better quality outputs for several applications.
QFF are easy to code, fast to compute, and serve as a simple drop-in addition to many neural field representations.
- Score: 28.82293263445964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multilayer perceptrons (MLPs) learn high frequencies slowly. Recent
approaches encode features in spatial bins to improve speed of learning
details, but at the cost of larger model size and loss of continuity. Instead,
we propose to encode features in bins of Fourier features that are commonly
used for positional encoding. We call these Quantized Fourier Features (QFF).
As a naturally multiresolution and periodic representation, our experiments
show that using QFF can result in smaller model size, faster training, and
better quality outputs for several applications, including Neural Image
Representations (NIR), Neural Radiance Field (NeRF) and Signed Distance
Function (SDF) modeling. QFF are easy to code, fast to compute, and serve as a
simple drop-in addition to many neural field representations.
Related papers
- FourierMamba: Fourier Learning Integration with State Space Models for Image Deraining [71.46369218331215]
Image deraining aims to remove rain streaks from rainy images and restore clear backgrounds.
We propose a new framework termed FourierMamba, which performs image deraining with Mamba in the Fourier space.
arXiv Detail & Related papers (2024-05-29T18:58:59Z) - Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion [12.935592400092712]
Implicit neural representations (INR) have made significant strides in various vision-related domains.
INR is prone to losing high-frequency information and is confined to the lack of global perceptual capabilities.
This paper introduces a Fourier-enhanced Implicit Neural Fusion Network (FeINFN) specifically designed for MHIF task.
arXiv Detail & Related papers (2024-04-23T16:14:20Z) - Progressive Fourier Neural Representation for Sequential Video
Compilation [75.43041679717376]
Motivated by continual learning, this work investigates how to accumulate and transfer neural implicit representations for multiple complex video data over sequential encoding sessions.
We propose a novel method, Progressive Fourier Neural Representation (PFNR), that aims to find an adaptive and compact sub-module in Fourier space to encode videos in each training session.
We validate our PFNR method on the UVG8/17 and DAVIS50 video sequence benchmarks and achieve impressive performance gains over strong continual learning baselines.
arXiv Detail & Related papers (2023-06-20T06:02:19Z) - Polynomial Neural Fields for Subband Decomposition and Manipulation [78.2401411189246]
We propose a new class of neural fields called neural fields (PNFs)
The key advantage of a PNF is that it can represent a signal as a composition of manipulable and interpretable components without losing the merits of neural fields.
We empirically demonstrate that Fourier PNFs enable signal manipulation applications such as texture transfer and scale-space.
arXiv Detail & Related papers (2023-02-09T18:59:04Z) - Neural Fourier Filter Bank [18.52741992605852]
We present a novel method to provide efficient and highly detailed reconstructions.
Inspired by wavelets, we learn a neural field that decompose the signal both spatially and frequency-wise.
arXiv Detail & Related papers (2022-12-04T03:45:08Z) - PREF: Phasorial Embedding Fields for Compact Neural Representations [54.44527545923917]
We present a phasorial embedding field emphPREF as a compact representation to facilitate neural signal modeling and reconstruction tasks.
Our experiments show PREF-based neural signal processing technique is on par with the state-of-the-art in 2D image completion, 3D SDF surface regression, and 5D radiance field reconstruction.
arXiv Detail & Related papers (2022-05-26T17:43:03Z) - FFC-SE: Fast Fourier Convolution for Speech Enhancement [1.0499611180329804]
Fast Fourier convolution (FFC) is the recently proposed neural operator showing promising performance in several computer vision problems.
In this work, we design neural network architectures which adapt FFC for speech enhancement.
We found that neural networks based on FFC outperform analogous convolutional models and show better or comparable results with other speech enhancement baselines.
arXiv Detail & Related papers (2022-04-06T18:52:47Z) - Fourier Disentangled Space-Time Attention for Aerial Video Recognition [54.80846279175762]
We present an algorithm, Fourier Activity Recognition (FAR), for UAV video activity recognition.
Our formulation uses a novel Fourier object disentanglement method to innately separate out the human agent from the background.
We have evaluated our approach on multiple UAV datasets including UAV Human RGB, UAV Human Night, Drone Action, and NEC Drone.
arXiv Detail & Related papers (2022-03-21T01:24:53Z) - Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time [43.0484840009621]
Implicit neural representations such as Neural Radiance Field (NeRF) have focused mainly on modeling static objects captured under multi-view settings.
We present a novel Fourier PlenOctree (FPO) technique to tackle efficient neural modeling and real-time rendering of dynamic scenes captured under the free-view video (FVV) setting.
We show that the proposed method is 3000 times faster than the original NeRF and over an order of magnitude acceleration over SOTA.
arXiv Detail & Related papers (2022-02-17T11:57:01Z) - Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains [69.62456877209304]
We show that passing input points through a simple Fourier feature mapping enables a multilayer perceptron to learn high-frequency functions.
Results shed light on advances in computer vision and graphics that achieve state-of-the-art results.
arXiv Detail & Related papers (2020-06-18T17:59:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.