Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion
- URL: http://arxiv.org/abs/2404.15174v1
- Date: Tue, 23 Apr 2024 16:14:20 GMT
- Title: Fourier-enhanced Implicit Neural Fusion Network for Multispectral and Hyperspectral Image Fusion
- Authors: Yu-Jie Liang, Zihan Cao, Liang-Jian Deng, Xiao Wu,
- Abstract summary: Implicit neural representations (INR) have made significant strides in various vision-related domains.
INR is prone to losing high-frequency information and is confined to the lack of global perceptual capabilities.
This paper introduces a Fourier-enhanced Implicit Neural Fusion Network (FeINFN) specifically designed for MHIF task.
- Score: 12.935592400092712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, implicit neural representations (INR) have made significant strides in various vision-related domains, providing a novel solution for Multispectral and Hyperspectral Image Fusion (MHIF) tasks. However, INR is prone to losing high-frequency information and is confined to the lack of global perceptual capabilities. To address these issues, this paper introduces a Fourier-enhanced Implicit Neural Fusion Network (FeINFN) specifically designed for MHIF task, targeting the following phenomena: The Fourier amplitudes of the HR-HSI latent code and LR-HSI are remarkably similar; however, their phases exhibit different patterns. In FeINFN, we innovatively propose a spatial and frequency implicit fusion function (Spa-Fre IFF), helping INR capture high-frequency information and expanding the receptive field. Besides, a new decoder employing a complex Gabor wavelet activation function, called Spatial-Frequency Interactive Decoder (SFID), is invented to enhance the interaction of INR features. Especially, we further theoretically prove that the Gabor wavelet activation possesses a time-frequency tightness property that favors learning the optimal bandwidths in the decoder. Experiments on two benchmark MHIF datasets verify the state-of-the-art (SOTA) performance of the proposed method, both visually and quantitatively. Also, ablation studies demonstrate the mentioned contributions. The code will be available on Anonymous GitHub (https://anonymous.4open.science/r/FeINFN-15C9/) after possible acceptance.
Related papers
- Robustifying Fourier Features Embeddings for Implicit Neural Representations [25.725097757343367]
Implicit Neural Representations (INRs) employ neural networks to represent continuous functions by mapping coordinates to the corresponding values of the target function.
INRs face a challenge known as spectral bias when dealing with scenes containing varying frequencies.
We propose the use of multi-layer perceptrons (MLPs) without additive.
arXiv Detail & Related papers (2025-02-08T07:43:37Z) - FE-UNet: Frequency Domain Enhanced U-Net with Segment Anything Capability for Versatile Image Segmentation [50.9040167152168]
We experimentally quantify the contrast sensitivity function of CNNs and compare it with that of the human visual system.
We propose the Wavelet-Guided Spectral Pooling Module (WSPM) to enhance and balance image features across the frequency domain.
To further emulate the human visual system, we introduce the Frequency Domain Enhanced Receptive Field Block (FE-RFB)
We develop FE-UNet, a model that utilizes SAM2 as its backbone and incorporates Hiera-Large as a pre-trained block.
arXiv Detail & Related papers (2025-02-06T07:24:34Z) - STAF: Sinusoidal Trainable Activation Functions for Implicit Neural Representation [7.2888019138115245]
Implicit Neural Representations (INRs) have emerged as a powerful framework for modeling continuous signals.
The spectral bias of ReLU-based networks is a well-established limitation, restricting their ability to capture fine-grained details in target signals.
We introduce Sinusoidal Trainable Functions Activation (STAF)
STAF inherently modulates its frequency components, allowing for self-adaptive spectral learning.
arXiv Detail & Related papers (2025-02-02T18:29:33Z) - Implicit Neural Representations with Fourier Kolmogorov-Arnold Networks [4.499833362998488]
Implicit neural representations (INRs) use neural networks to provide continuous and resolution-independent representations of complex signals.
The proposed FKAN utilizes learnable activation functions modeled as Fourier series in the first layer to effectively control and learn the task-specific frequency components.
Experimental results show that our proposed FKAN model outperforms three state-of-the-art baseline schemes.
arXiv Detail & Related papers (2024-09-14T05:53:33Z) - Frequency-aware Feature Fusion for Dense Image Prediction [99.85757278772262]
We propose Frequency-Aware Feature Fusion (FreqFusion) for dense image prediction tasks.
FreqFusion integrates an Adaptive Low-Pass Filter (ALPF) generator, an offset generator, and an Adaptive High-Pass Filter (AHPF) generator.
Comprehensive visualization and quantitative analysis demonstrate that FreqFusion effectively improves feature consistency and sharpens object boundaries.
arXiv Detail & Related papers (2024-08-23T07:30:34Z) - FINER++: Building a Family of Variable-periodic Functions for Activating Implicit Neural Representation [39.116375158815515]
Implicit Neural Representation (INR) is causing a revolution in the field of signal processing.
INR techniques suffer from the "frequency"-specified spectral bias and capacity-convergence gap.
We propose the FINER++ framework by extending existing periodic/non-periodic activation functions to variable-periodic ones.
arXiv Detail & Related papers (2024-07-28T09:24:57Z) - Hybrid Convolutional and Attention Network for Hyperspectral Image Denoising [54.110544509099526]
Hyperspectral image (HSI) denoising is critical for the effective analysis and interpretation of hyperspectral data.
We propose a hybrid convolution and attention network (HCANet) to enhance HSI denoising.
Experimental results on mainstream HSI datasets demonstrate the rationality and effectiveness of the proposed HCANet.
arXiv Detail & Related papers (2024-03-15T07:18:43Z) - Frequency-Aware Deepfake Detection: Improving Generalizability through
Frequency Space Learning [81.98675881423131]
This research addresses the challenge of developing a universal deepfake detector that can effectively identify unseen deepfake images.
Existing frequency-based paradigms have relied on frequency-level artifacts introduced during the up-sampling in GAN pipelines to detect forgeries.
We introduce a novel frequency-aware approach called FreqNet, centered around frequency domain learning, specifically designed to enhance the generalizability of deepfake detectors.
arXiv Detail & Related papers (2024-03-12T01:28:00Z) - A Sampling Theory Perspective on Activations for Implicit Neural
Representations [73.6637608397055]
Implicit Neural Representations (INRs) have gained popularity for encoding signals as compact, differentiable entities.
We conduct a comprehensive analysis of these activations from a sampling theory perspective.
Our investigation reveals that sinc activations, previously unused in conjunction with INRs, are theoretically optimal for signal encoding.
arXiv Detail & Related papers (2024-02-08T05:52:45Z) - Implicit Neural Feature Fusion Function for Multispectral and
Hyperspectral Image Fusion [12.43436096160316]
Multispectral and Hyperspectral Image Fusion (MHIF) is a practical task that aims to fuse a high-resolution multispectral image (HR-MSI) and a low-resolution hyperspectral image (LR-HSI) of the same scene to obtain a high-resolution hyperspectral image (HR-HSI)
arXiv Detail & Related papers (2023-07-14T11:59:47Z) - CDDFuse: Correlation-Driven Dual-Branch Feature Decomposition for
Multi-Modality Image Fusion [138.40422469153145]
We propose a novel Correlation-Driven feature Decomposition Fusion (CDDFuse) network.
We show that CDDFuse achieves promising results in multiple fusion tasks, including infrared-visible image fusion and medical image fusion.
arXiv Detail & Related papers (2022-11-26T02:40:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.