論文の概要: A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection
- arxiv url: http://arxiv.org/abs/2212.00966v1
- Date: Fri, 2 Dec 2022 04:40:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 16:22:26.951855
- Title: A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection
- Title(参考訳): 侵入検知のためのハイブリッドディープラーニング異常検出フレームワーク
- Authors: Rahul Kale, Zhi Lu, Kar Wai Fok, Vrizlynn L. L. Thing
- Abstract要約: 本稿では,3段階のディープラーニング異常検出に基づくネットワーク侵入攻撃検出フレームワークを提案する。
このフレームワークは、教師なし(K平均クラスタリング)、半教師付き(GANomaly)、および教師付き学習(CNN)アルゴリズムの統合を含む。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
- 参考スコア(独自算出の注目度): 4.718295605140562
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Cyber intrusion attacks that compromise the users' critical and sensitive
data are escalating in volume and intensity, especially with the growing
connections between our daily life and the Internet. The large volume and high
complexity of such intrusion attacks have impeded the effectiveness of most
traditional defence techniques. While at the same time, the remarkable
performance of the machine learning methods, especially deep learning, in
computer vision, had garnered research interests from the cyber security
community to further enhance and automate intrusion detections. However, the
expensive data labeling and limitation of anomalous data make it challenging to
train an intrusion detector in a fully supervised manner. Therefore, intrusion
detection based on unsupervised anomaly detection is an important feature too.
In this paper, we propose a three-stage deep learning anomaly detection based
network intrusion attack detection framework. The framework comprises an
integration of unsupervised (K-means clustering), semi-supervised (GANomaly)
and supervised learning (CNN) algorithms. We then evaluated and showed the
performance of our implemented framework on three benchmark datasets: NSL-KDD,
CIC-IDS2018, and TON_IoT.
- Abstract(参考訳): ユーザーの重要かつ機密性の高いデータを侵害するサイバー侵入攻撃は、特に日常生活とインターネットのつながりが高まるにつれて、ボリュームと強度が増大している。
このような侵入攻撃の大きな量と複雑さは、従来の防御技術の有効性を阻害している。
同時に、コンピュータビジョンにおける機械学習手法の顕著なパフォーマンス、特にディープラーニングは、侵入検知をさらに強化し自動化するために、サイバーセキュリティコミュニティから研究の関心を集めている。
しかしながら、高価なデータラベリングと異常データの制限は、完全に監視された方法で侵入検知器を訓練することを困難にしている。
したがって,教師なし異常検出に基づく侵入検出も重要な特徴である。
本稿では,3段階のディープラーニング異常検出に基づくネットワーク侵入攻撃検出フレームワークを提案する。
このフレームワークは、教師なし(K平均クラスタリング)、半教師付き(GANomaly)、および教師付き学習(CNN)アルゴリズムの統合を含む。
次に、NSL-KDD、CIC-IDS2018、TON_IoTの3つのベンチマークデータセット上で、実装したフレームワークの性能を評価した。
関連論文リスト
- Federated Learning for Zero-Day Attack Detection in 5G and Beyond V2X Networks [9.86830550255822]
Connected and Automated Vehicles(CAV)は、5GおよびBeyondネットワーク(5GB)上にあり、セキュリティとプライバシ攻撃のベクトルの増加に対して脆弱である。
本稿では,ネットワークトラフィックパターンのみに依存する攻撃を検知するディープ・オートエンコーダ法を利用した新しい検出機構を提案する。
連合学習を用いて、提案した侵入検知システムは、CAVのプライバシーを維持し、通信オーバーヘッドを最小限に抑えながら、大規模で多様なネットワークトラフィックで訓練することができる。
論文 参考訳(メタデータ) (2024-07-03T12:42:31Z) - Deep Learning Algorithms Used in Intrusion Detection Systems -- A Review [0.0]
本稿では,CNN,Recurrent Neural Networks(RNN),Deep Belief Networks(DBN),Deep Neural Networks(DNN),Long Short-Term Memory(LSTM),Autoencoders(AE),Multi-Layer Perceptrons(MLP),Self-Normalizing Networks(SNN),Hybrid Model(ネットワーク侵入検知システム)など,近年のディープラーニング技術の進歩について述べる。
論文 参考訳(メタデータ) (2024-02-26T20:57:35Z) - A near-autonomous and incremental intrusion detection system through active learning of known and unknown attacks [2.686686221415684]
侵入検知は、セキュリティ専門家の伝統的な慣行であるが、まだ対処すべき問題がいくつかある。
本稿では、未知の攻撃と未知の攻撃の両方を適応的かつ漸進的に検出するハイブリッド侵入検知システム(IDS)のアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-10-26T14:37:54Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - A Comprehensive Study of the Robustness for LiDAR-based 3D Object
Detectors against Adversarial Attacks [84.10546708708554]
3Dオブジェクト検出器は、セキュリティクリティカルなタスクにおいてますます重要になっている。
敵の攻撃に対する強固さを理解することが不可欠である。
本稿では,LiDARをベースとした3次元検出器の対角攻撃時のロバスト性評価と解析を行った。
論文 参考訳(メタデータ) (2022-12-20T13:09:58Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
本稿では,ベイズ最適化手法を用いた効果的な異常検出フレームワークを提案する。
ISCX 2012データセットを用いて検討したアルゴリズムの性能を評価する。
実験結果から, 精度, 精度, 低コストアラームレート, リコールの観点から, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-08-05T19:29:35Z) - Security of Distributed Machine Learning: A Game-Theoretic Approach to
Design Secure DSVM [31.480769801354413]
この研究は、データ中毒やネットワーク攻撃から学習を保護するために、セキュアな分散アルゴリズムを開発することを目的としている。
我々は,分散サポートベクトルマシン(SVM)を使用する学習者と,トレーニングデータやラベルを変更することができる攻撃者の相反する目標を捉えるためのゲーム理論の枠組みを確立する。
数値的な結果から,分散SVMは異なるタイプの攻撃で失敗する傾向にあり,ネットワーク構造や攻撃能力に強い依存があることが分かる。
論文 参考訳(メタデータ) (2020-03-08T18:54:17Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
本稿では,階層型エッジコンピューティング(HEC)システムに対する適応型異常検出手法を提案する。
本研究では,入力データから抽出した文脈情報に基づいてモデルを選択する適応的手法を設計し,異常検出を行う。
提案手法を実際のIoTデータセットを用いて評価し,検出タスクをクラウドにオフロードするのとほぼ同じ精度を維持しながら,検出遅延を84%削減できることを実証した。
論文 参考訳(メタデータ) (2020-01-10T05:29:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。