Groupoid Toric Codes
- URL: http://arxiv.org/abs/2212.01021v1
- Date: Fri, 2 Dec 2022 08:29:22 GMT
- Title: Groupoid Toric Codes
- Authors: Pramod Padmanabhan, Indrajit Jana
- Abstract summary: We show that a consistent system can be constructed for an arbitrary groupoid.
We find several exactly solvable models that have fracton-like features.
The origin of this degeneracy can be traced to loop operators supported on both contractible and non-contractible loops.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The toric code can be constructed as a gauge theory of finite groups on
oriented two dimensional lattices. Here we construct analogous models with the
gauge fields belonging to groupoids, which are categories where every morphism
has an inverse. We show that a consistent system can be constructed for an
arbitrary groupoid and analyze the simplest example that can be seen as the
analog of the Abelian $\mathbb{Z}_2$ toric code. We find several exactly
solvable models that have fracton-like features which include an extensive
ground state degeneracy and excitations that are either immobile or have
restricted mobility. Among the possibilities we study in detail the one where
the ground state degeneracy scales as $2\times 2^{N_v}$, where $N_v$ is the
number of vertices in the lattice. The origin of this degeneracy can be traced
to loop operators supported on both contractible and non-contractible loops. In
particular, different non-contractible loops, along the same direction on a
torus, result in different ground states. This is an exponential increase in
the number of logical qubits that can be encoded in this code. Moreover the
face excitations in this system are deconfined, free to move without an energy
cost along certain directions of the lattice, whereas in certain other
directions their movement incurs an energy cost. This places a restriction on
the types of loop operators that contribute to the ground state degeneracy. The
vertex excitations are immobile. The results are also extended to the groupoid
analogs of Abelian $\mathbb{Z}_N$ toric codes.
Related papers
- Approximation of diffeomorphisms for quantum state transfers [49.1574468325115]
We seek to combine two emerging standpoints in control theory.
We numerically find control laws driving state transitions in a bilinear Schr"odinger PDE posed on the torus.
arXiv Detail & Related papers (2025-03-18T17:28:59Z) - Bridging conformal field theory and parton approaches to SU(n)_k chiral spin liquids [48.225436651971805]
We employ the $mathrmSU(n)_k$ Wess-Zumino-Witten (WZW) model in conformal field theory to construct lattice wave functions in both one and two dimensions.<n>The spins on all lattice sites are chosen to transform under the $mathrmSU(n)$ irreducible representation with a single row and $k$ boxes in the Young tableau.
arXiv Detail & Related papers (2025-01-16T14:42:00Z) - Representation theory of Gaussian unitary transformations for bosonic and fermionic systems [0.0]
We analyze the behavior of the sign ambiguity that one needs to deal with when moving between the groups of the symplectic and special annihilation group.
We show how we can efficiently describe group multiplications in the double cover without the need of going to a faithful representation on an exponentially large or even infinite-dimensional space.
arXiv Detail & Related papers (2024-09-18T01:22:38Z) - Realizing triality and $p$-ality by lattice twisted gauging in (1+1)d quantum spin systems [0.0]
We define the twisted Gauss law operator and implement the twisted gauging of the finite group on the lattice.
We show the twisted gauging is equivalent to the two-step procedure of first applying the SPT entangler and then untwisted gauging.
arXiv Detail & Related papers (2024-05-23T18:00:02Z) - Architectures and random properties of symplectic quantum circuits [0.0]
Parametrized and random unitary $n$-qubit circuits play a central role in quantum information.
We present a universal set of generators $mathcalG$ for the symplectic algebra $imathfraksp(d/2)$.
We find that the operators in $mathcalG$ cannot generate arbitrary local symplectic unitaries.
We then review the Schur-Weyl duality between the symplectic group and the Brauer algebra, and use tools from Weingarten calculus to prove that Pauli measurements can converge
arXiv Detail & Related papers (2024-05-16T17:15:39Z) - Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Quantum Current and Holographic Categorical Symmetry [62.07387569558919]
A quantum current is defined as symmetric operators that can transport symmetry charges over an arbitrary long distance.
The condition for quantum currents to be superconducting is also specified, which corresponds to condensation of anyons in one higher dimension.
arXiv Detail & Related papers (2023-05-22T11:00:25Z) - Algebraic Aspects of Boundaries in the Kitaev Quantum Double Model [77.34726150561087]
We provide a systematic treatment of boundaries based on subgroups $Ksubseteq G$ with the Kitaev quantum double $D(G)$ model in the bulk.
The boundary sites are representations of a $*$-subalgebra $Xisubseteq D(G)$ and we explicate its structure as a strong $*$-quasi-Hopf algebra.
As an application of our treatment, we study patches with boundaries based on $K=G$ horizontally and $K=e$ vertically and show how these could be used in a quantum computer
arXiv Detail & Related papers (2022-08-12T15:05:07Z) - Discrete Abelian lattice gauge theories on a ladder and their dualities
with quantum clock models [0.0]
We study a duality transformation from the gauge-invariant subspace of a $mathbbZ_N$ lattice gauge theory to an $N$-clock model on a single chain.
The main feature of this mapping is the emergence of a longitudinal field in the clock model, whose value depends on the superselection sector of the gauge model.
arXiv Detail & Related papers (2022-08-05T15:14:18Z) - The Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) Equation for
Two-Dimensional Systems [62.997667081978825]
Open quantum systems can obey the Franke-Gorini-Kossakowski-Lindblad-Sudarshan (FGKLS) equation.
We exhaustively study the case of a Hilbert space dimension of $2$.
arXiv Detail & Related papers (2022-04-16T07:03:54Z) - Quantum double aspects of surface code models [77.34726150561087]
We revisit the Kitaev model for fault tolerant quantum computing on a square lattice with underlying quantum double $D(G)$ symmetry.
We show how our constructions generalise to $D(H)$ models based on a finite-dimensional Hopf algebra $H$.
arXiv Detail & Related papers (2021-06-25T17:03:38Z) - $\mathbb{Z}_2$ lattice gauge theories and Kitaev's toric code: A scheme
for analog quantum simulation [0.0]
Kitaev's toric code is an exactly solvable model with $mathbbZ$-topological order.
Our work paves the way for realizing non-Abelian anyons in analog quantum simulators.
arXiv Detail & Related papers (2020-12-09T18:59:58Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.