論文の概要: On the Change of Decision Boundaries and Loss in Learning with Concept
Drift
- arxiv url: http://arxiv.org/abs/2212.01223v1
- Date: Fri, 2 Dec 2022 14:58:13 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 17:25:56.353930
- Title: On the Change of Decision Boundaries and Loss in Learning with Concept
Drift
- Title(参考訳): 概念ドリフトによる学習における決定境界と損失の変化について
- Authors: Fabian Hinder, Valerie Vaquet, Johannes Brinkrolf, Barbara Hammer
- Abstract要約: 概念ドリフト(concept drift)とは、観測データを生成する分布が時間とともに変化する現象を指す。
ドリフトで学習するための多くの技術は、モデル一般化誤差を近似する量としてインターリーブテストトレイン誤差(ITTE)に依存している。
- 参考スコア(独自算出の注目度): 8.686667049158476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The notion of concept drift refers to the phenomenon that the distribution
generating the observed data changes over time. If drift is present, machine
learning models may become inaccurate and need adjustment. Many technologies
for learning with drift rely on the interleaved test-train error (ITTE) as a
quantity which approximates the model generalization error and triggers drift
detection and model updates. In this work, we investigate in how far this
procedure is mathematically justified. More precisely, we relate a change of
the ITTE to the presence of real drift, i.e., a changed posterior, and to a
change of the training result under the assumption of optimality. We support
our theoretical findings by empirical evidence for several learning algorithms,
models, and datasets.
- Abstract(参考訳): 概念ドリフトの概念は、観測データを生成する分布が時間とともに変化する現象を指す。
ドリフトが存在する場合、機械学習モデルは不正確になり、調整が必要である。
ドリフト学習のための多くの技術は、モデル一般化誤差を近似し、ドリフト検出とモデル更新をトリガーする量としてインターリーブテストトレイン誤差(ITTE)に依存している。
本研究では,この手順がどの程度数学的に正当化されるかを検討する。
より正確には、ITTEの変化は、実際のドリフトの存在、すなわち、変化した後部の存在と、最適性の仮定の下でのトレーニング結果の変化とを関連付ける。
我々は、いくつかの学習アルゴリズム、モデル、データセットの実証的な証拠により、理論的発見を支持する。
関連論文リスト
- Methods for Generating Drift in Text Streams [49.3179290313959]
コンセプトドリフトは、実世界のデータセットで頻繁に発生する現象であり、時間とともにデータ分布の変化に対応する。
本稿では,ラベル付きドリフトを用いたデータセット作成を容易にするための4つのテキストドリフト生成手法を提案する。
その結果、ドリフトの直後にすべてのメソッドのパフォーマンスが低下し、インクリメンタルなSVMは、以前のパフォーマンスレベルを実行し、回復するのに最も速いことを示している。
論文 参考訳(メタデータ) (2024-03-18T23:48:33Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Model Based Explanations of Concept Drift [8.686667049158476]
概念ドリフト(concept drift)とは、観測データを生成する分布が時間とともに変化する現象を指す。
ドリフトが存在する場合、機械学習モデルは不正確になり、調整が必要である。
本稿では,空間的特徴の特徴的な変化の観点から,概念の漂流を特徴付ける新しい技術を提案する。
論文 参考訳(メタデータ) (2023-03-16T14:03:56Z) - Unsupervised Unlearning of Concept Drift with Autoencoders [5.41354952642957]
コンセプトドリフトは、将来のサンプルのデータストリームに影響を与えるデータ分散の変化を指す。
本稿では,世界レベルでの教師なしおよびモデルに依存しないドリフト適応手法を提案する。
論文 参考訳(メタデータ) (2022-11-23T14:52:49Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Churn Reduction via Distillation [54.5952282395487]
本研究は, 基礎モデルを教師として用いた蒸留によるトレーニングと, 予測的チャーンに対する明示的な制約によるトレーニングとの等価性を示す。
次に, 蒸留が近年の多くのベースラインに対する低チャーン訓練に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-04T18:03:31Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
誤り率の変化パターンを追跡し,コンセプトドリフトの分類を学習する新しいフレームワークであるMeta-ADDを提案する。
具体的には、トレーニングフェーズにおいて、様々なコンセプトドリフトの誤差率に基づいてメタ特徴を抽出し、その後、原型ニューラルネットワークを介してメタ検出装置を開発する。
検出フェーズでは、学習したメタ検出器が微調整され、ストリームベースのアクティブラーニングを介して対応するデータストリームに適応する。
論文 参考訳(メタデータ) (2021-05-04T11:10:39Z) - Learning to Reweight Imaginary Transitions for Model-Based Reinforcement
Learning [58.66067369294337]
モデルが不正確または偏りがある場合、虚構軌跡はアクション値とポリシー関数を訓練するために欠落する可能性がある。
虚構遷移を適応的に再重み付けし, 未生成軌跡の負の効果を低減させる。
提案手法は,複数のタスクにおいて,最先端のモデルベースおよびモデルフリーなRLアルゴリズムより優れる。
論文 参考訳(メタデータ) (2021-04-09T03:13:35Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
本稿では,新しいタイプの解釈可能な機械学習手法を提案する。
量子シフトを用いた分類モデルでは、特徴空間の予測クラスへの分割を理解するのに役立ちます。
基本的に、実際のデータポイント(または特定の関心点)を使用し、特定の特徴をわずかに引き上げたり減少させたりした後の予測の変化を観察する。
論文 参考訳(メタデータ) (2020-09-11T16:35:53Z) - Counterfactual Explanations of Concept Drift [11.53362411363005]
概念ドリフトとは、観測データの背後にある分布が時間とともに変化する現象を指す。
本稿では,典型的な例で表現される空間的特徴の特徴的変化の観点から,概念の漂流を特徴付ける新しい技術を提案する。
論文 参考訳(メタデータ) (2020-06-23T08:27:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。