論文の概要: Autoregressive based Drift Detection Method
- arxiv url: http://arxiv.org/abs/2203.04769v2
- Date: Sun, 11 Jun 2023 10:09:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-14 03:08:01.312037
- Title: Autoregressive based Drift Detection Method
- Title(参考訳): 自己回帰型ドリフト検出方法
- Authors: Mansour Zoubeirou A Mayaki and Michel Riveill
- Abstract要約: 我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the classic machine learning framework, models are trained on historical
data and used to predict future values. It is assumed that the data
distribution does not change over time (stationarity). However, in real-world
scenarios, the data generation process changes over time and the model has to
adapt to the new incoming data. This phenomenon is known as concept drift and
leads to a decrease in the predictive model's performance. In this study, we
propose a new concept drift detection method based on autoregressive models
called ADDM. This method can be integrated into any machine learning algorithm
from deep neural networks to simple linear regression model. Our results show
that this new concept drift detection method outperforms the state-of-the-art
drift detection methods, both on synthetic data sets and real-world data sets.
Our approach is theoretically guaranteed as well as empirical and effective for
the detection of various concept drifts. In addition to the drift detector, we
proposed a new method of concept drift adaptation based on the severity of the
drift.
- Abstract(参考訳): 古典的な機械学習フレームワークでは、モデルは過去のデータに基づいてトレーニングされ、将来の価値を予測するために使用される。
データ分布は時間とともに変化しない(定常性)と仮定される。
しかし、現実のシナリオでは、データ生成プロセスは時間とともに変化し、モデルは新しい入力データに適応する必要があります。
この現象は概念ドリフトと呼ばれ、予測モデルの性能が低下する。
本研究では,ADDMと呼ばれる自己回帰モデルに基づく新しいドリフト検出手法を提案する。
この方法は、ディープニューラルネットワークから単純な線形回帰モデルまで、あらゆる機械学習アルゴリズムに統合することができる。
提案手法は, 合成データセットと実世界のデータセットの両方において, 最先端のドリフト検出方法よりも優れていることを示す。
提案手法は理論的に保証され,様々な概念ドリフトの検出に有効である。
ドリフト検出器に加えて,ドリフトの重大度に基づく新しいドリフト適応法を提案した。
関連論文リスト
- Non-Stationary Learning of Neural Networks with Automatic Soft Parameter Reset [98.52916361979503]
非定常性を自動的にモデル化し適応する新しい学習手法を導入する。
非定常的・非政治的強化学習環境において,本手法が有効であることを示す。
論文 参考訳(メタデータ) (2024-11-06T16:32:40Z) - DriftGAN: Using historical data for Unsupervised Recurring Drift Detection [0.6358693097475243]
実世界のアプリケーションでは、入力データ分布は、概念ドリフト(concept drift)として知られる現象として、一定期間にわたって静的であることが多い。
ほとんどの概念ドリフト検出方法は、概念ドリフトを検出し、モデルを再訓練する要求をシグナル伝達する。
本稿では,GAN(Generative Adversarial Networks)に基づく教師なしの手法を提案する。
論文 参考訳(メタデータ) (2024-07-09T04:38:44Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
本研究では,新しい運転環境に3次元物体検出器を適応させる手法を提案する。
提案手法は,空間的量子化履歴特徴を用いたLiDARに基づく検出モデルを強化する。
実世界のデータセットの実験では、大幅な改善が示されている。
論文 参考訳(メタデータ) (2023-09-21T15:00:31Z) - Unsupervised Unlearning of Concept Drift with Autoencoders [5.41354952642957]
コンセプトドリフトは、将来のサンプルのデータストリームに影響を与えるデータ分散の変化を指す。
本稿では,世界レベルでの教師なしおよびモデルに依存しないドリフト適応手法を提案する。
論文 参考訳(メタデータ) (2022-11-23T14:52:49Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
誤り率の変化パターンを追跡し,コンセプトドリフトの分類を学習する新しいフレームワークであるMeta-ADDを提案する。
具体的には、トレーニングフェーズにおいて、様々なコンセプトドリフトの誤差率に基づいてメタ特徴を抽出し、その後、原型ニューラルネットワークを介してメタ検出装置を開発する。
検出フェーズでは、学習したメタ検出器が微調整され、ストリームベースのアクティブラーニングを介して対応するデータストリームに適応する。
論文 参考訳(メタデータ) (2021-05-04T11:10:39Z) - A Bayesian Perspective on Training Speed and Model Selection [51.15664724311443]
モデルのトレーニング速度の測定値を用いて,その限界確率を推定できることを示す。
線形モデルと深部ニューラルネットワークの無限幅限界に対するモデル選択タスクの結果を検証する。
以上の結果から、勾配勾配勾配で訓練されたニューラルネットワークが、一般化する関数に偏りがある理由を説明するための、有望な新たな方向性が示唆された。
論文 参考訳(メタデータ) (2020-10-27T17:56:14Z) - DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift [12.579800289829963]
ストリーミングデータから学ぶとき、概念ドリフト(concept drift)とも呼ばれるデータ分散の変化は、以前に学習したモデルが不正確なものになる可能性がある。
本研究では,ドリフト検出をより広範な安定状態/反応性状態プロセスに組み込むことにより,従来のドリフト検出に基づく手法を拡張する適応学習アルゴリズムを提案する。
このアルゴリズムはベースラーナーにおいて汎用的であり、様々な教師付き学習問題に適用できる。
論文 参考訳(メタデータ) (2020-03-13T23:25:25Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。