論文の概要: Can AI Understand Our Universe? Test of Fine-Tuning GPT by Astrophysical Data
- arxiv url: http://arxiv.org/abs/2404.10019v1
- Date: Sun, 14 Apr 2024 20:52:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-17 21:08:17.969451
- Title: Can AI Understand Our Universe? Test of Fine-Tuning GPT by Astrophysical Data
- Title(参考訳): AIは宇宙を理解できるか? 天体物理データによる微調整GPTのテスト
- Authors: Yu Wang, Shu-Rui Zhang, Aidin Momtaz, Rahim Moradi, Fatemeh Rastegarnia, Narek Sahakyan, Soroush Shakeri, Liang Li,
- Abstract要約: ChatGPTはここ数ヶ月で最も話題になっているコンセプトで、プロフェッショナルと一般大衆の両方を魅了している。
本稿では、銀河、クエーサー、星、ガンマ線バースト(GRBs)、ブラックホール(BHs)の観測から得られた天文学データを用いて、生成前訓練変圧器モデル(GPT)を微調整する。
我々は、LLMが科学的研究において証明された有効性を示す試験として、これを成功とみなしている。
- 参考スコア(独自算出の注目度): 6.0108108767559525
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ChatGPT has been the most talked-about concept in recent months, captivating both professionals and the general public alike, and has sparked discussions about the changes that artificial intelligence (AI) will bring to the world. As physicists and astrophysicists, we are curious about if scientific data can be correctly analyzed by large language models (LLMs) and yield accurate physics. In this article, we fine-tune the generative pre-trained transformer (GPT) model by the astronomical data from the observations of galaxies, quasars, stars, gamma-ray bursts (GRBs), and the simulations of black holes (BHs), the fine-tuned model demonstrates its capability to classify astrophysical phenomena, distinguish between two types of GRBs, deduce the redshift of quasars, and estimate BH parameters. We regard this as a successful test, marking the LLM's proven efficacy in scientific research. With the ever-growing volume of multidisciplinary data and the advancement of AI technology, we look forward to the emergence of a more fundamental and comprehensive understanding of our universe. This article also shares some interesting thoughts on data collection and AI design. Using the approach of understanding the universe - looking outward at data and inward for fundamental building blocks - as a guideline, we propose a method of series expansion for AI, suggesting ways to train and control AI that is smarter than humans.
- Abstract(参考訳): ChatGPTはここ数カ月で最も話題になっているコンセプトであり、専門家と一般大衆の両方を魅了し、人工知能(AI)が世界にもたらす変化について議論を呼んだ。
物理学者や宇宙物理学者として、科学データが大きな言語モデル(LLM)によって正しく分析され、正確な物理が得られるかどうかに興味を持っている。
本稿では、銀河、クエーサー、恒星、ガンマ線バースト(GRB)の観測から得られた天文学データと、ブラックホール(BHs)のシミュレーションにより、生成前訓練変圧器モデル(GPT)を微調整し、微調整されたモデルは、天体物理学現象を分類し、2種類のGRBを区別し、クエーサーの赤方偏移を推定し、BHパラメータを推定する能力を示す。
我々は、LLMが科学的研究において証明された有効性を示す試験として、これを成功とみなしている。
増え続ける多分野データの量とAI技術の進歩により、私たちは宇宙のより根本的で包括的な理解の出現を楽しみにしています。
この記事では、データ収集とAI設計に関する興味深い考えを共有します。
宇宙を理解するアプローチ – データを見渡して基本的なビルディングブロックを内向的に見る – をガイドラインとして,AIのシリーズ展開方法を提案し,人間よりも賢いAIをトレーニングし,制御する方法を提案する。
関連論文リスト
- Using Galaxy Evolution as Source of Physics-Based Ground Truth for Generative Models [0.9701233658865522]
我々は条件付き拡散軸確率モデル(DDPM)と条件付き変分オートエンコーダ(CVAE)を構築する。
これは、これらの生成モデルを物理的に動機付けられたメトリクスを用いて探索する最初の研究の1つである。
どちらのモデルも、人間の評価に基づいて、同等の現実的な銀河を生成することが分かっていますが、我々の物理学に基づくメトリクスは、生成モデルの強みと弱みをよりよく識別することができます。
論文 参考訳(メタデータ) (2024-07-09T21:01:08Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
生成AIは、現実世界の写真によく似た合成画像を作成する可能性を解き放った。
本稿では、これらのAI生成画像を新しいデータソースとして活用するという革新的な概念を探求する。
実際のデータとは対照的に、AI生成データには、未整合のアブリダンスやスケーラビリティなど、大きなメリットがある。
論文 参考訳(メタデータ) (2023-10-03T06:55:19Z) - X-VoE: Measuring eXplanatory Violation of Expectation in Physical Events [75.94926117990435]
本研究では,AIエージェントによる直感的な物理の把握を評価するベンチマークデータセットであるX-VoEを紹介する。
X-VoEは直感的な物理モデルの説明能力を高めるためのより高いバーを確立する。
本稿では、物理力学を捉え、隠蔽対象状態を推定する説明に基づく学習システムを提案する。
論文 参考訳(メタデータ) (2023-08-21T03:28:23Z) - Artificial Intelligence for Science in Quantum, Atomistic, and Continuum Systems [268.585904751315]
科学のためのAI(AI4Science)として知られる新しい研究領域
領域は、物理世界(波動関数と電子密度)、原子(分子、タンパク質、物質、相互作用)、マクロ(流体、気候、地下)まで理解することを目的としている。
主要な課題は、物理第一原理、特に対称性を深層学習法によって自然システムで捉える方法である。
論文 参考訳(メタデータ) (2023-07-17T12:14:14Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Astronomia ex machina: a history, primer, and outlook on neural networks
in astronomy [0.0]
我々は天文学における接続性の進化をその3つの波で追跡した。
我々は、天文学的な応用のために微調整されたGPTライクな基礎モデルの採用を論じる。
論文 参考訳(メタデータ) (2022-11-07T19:00:00Z) - Unsupervised Domain Adaptation for Constraining Star Formation Histories [0.0]
宇宙の形成を理解するためには、銀河の可視質量の時間進化を導き出さなければならない。
宇宙物理学者は スーパーコンピュータを活用し 銀河のシミュレーションモデルを進化させます 宇宙の現在の時代まで
我々は、シミュレーションデータを用いて、銀河の正確なSFHを導出するための教師なし領域適応の能力について議論する。
論文 参考訳(メタデータ) (2021-12-28T10:01:28Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
科学的な発見のためのAIの有用性を高めるための新たな機会と課題を概説する。
産業におけるAIの目標と科学におけるAIの目標の区別は、データ内のパターンを識別することと、データから世界のパターンを発見することとの間に緊張を生じさせる。
論文 参考訳(メタデータ) (2021-11-27T00:55:21Z) - From Kepler to Newton: Explainable AI-based Paradigm for Science
Discovery [16.392568986688595]
我々は、科学発見のための説明可能なAIベースのパラダイムを導入する。
AIに基づく科学発見プロセスを示すために、ケプラーの惑星運動法則とニュートンの普遍重力法則が(説明可能な)AIによってどのように再発見されるかを示す。
論文 参考訳(メタデータ) (2021-11-24T00:45:27Z) - Explainable Artificial Intelligence and Machine Learning: A reality
rooted perspective [0.0]
説明可能なAIとは何か,という議論があります。
我々は、希望的な思考ではなく、物理学以外の科学理論に関連して、現実的な基礎的特性を提示する。
論文 参考訳(メタデータ) (2020-01-26T15:09:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。