論文の概要: PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models
- arxiv url: http://arxiv.org/abs/2212.01558v2
- Date: Mon, 19 Jun 2023 07:27:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 05:00:56.171464
- Title: PartSLIP: Low-Shot Part Segmentation for 3D Point Clouds via Pretrained
Image-Language Models
- Title(参考訳): PartSLIP: 事前訓練画像言語モデルによる3次元点雲の低ショット部分分割
- Authors: Minghua Liu, Yinhao Zhu, Hong Cai, Shizhong Han, Zhan Ling, Fatih
Porikli, Hao Su
- Abstract要約: 一般化可能な3D部分分割は重要だが、ビジョンとロボティクスでは難しい。
本稿では,事前学習した画像言語モデルGLIPを利用して,3次元点雲の低ショット部分分割法を提案する。
我々は2Dから3Dへの豊富な知識を、ポイントクラウドレンダリングにおけるGLIPに基づく部分検出と新しい2D-to-3Dラベルリフトアルゴリズムにより転送する。
- 参考スコア(独自算出の注目度): 56.324516906160234
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generalizable 3D part segmentation is important but challenging in vision and
robotics. Training deep models via conventional supervised methods requires
large-scale 3D datasets with fine-grained part annotations, which are costly to
collect. This paper explores an alternative way for low-shot part segmentation
of 3D point clouds by leveraging a pretrained image-language model, GLIP, which
achieves superior performance on open-vocabulary 2D detection. We transfer the
rich knowledge from 2D to 3D through GLIP-based part detection on point cloud
rendering and a novel 2D-to-3D label lifting algorithm. We also utilize
multi-view 3D priors and few-shot prompt tuning to boost performance
significantly. Extensive evaluation on PartNet and PartNet-Mobility datasets
shows that our method enables excellent zero-shot 3D part segmentation. Our
few-shot version not only outperforms existing few-shot approaches by a large
margin but also achieves highly competitive results compared to the fully
supervised counterpart. Furthermore, we demonstrate that our method can be
directly applied to iPhone-scanned point clouds without significant domain
gaps.
- Abstract(参考訳): 汎用的な3d部分セグメンテーションは重要だが、ビジョンとロボティクスでは難しい。
従来の教師あり手法による深層モデルのトレーニングには,粒度の細かい部分アノテーションを備えた大規模3dデータセットが必要となる。
本稿では,事前学習した画像言語モデルであるGLIPを利用して,3次元点群を低ショットで分割する手法を提案する。
我々は2Dから3Dへの豊富な知識を、ポイントクラウドレンダリングにおけるGLIPに基づく部分検出と新しい2D-to-3Dラベルリフトアルゴリズムにより転送する。
また,マルチビュー3Dプリエントと数発のプロンプトチューニングを利用して性能を著しく向上する。
partnetとpartnet-mobilityデータセットの広範な評価により,ゼロショット3dセグメンテーションが可能となった。
私たちの少数ショットバージョンは、既存の少数ショットアプローチを大きなマージンで上回るだけでなく、完全に監督されたアプローチと比べて非常に競争力のある結果も得られます。
さらに,本手法をiphoneでスキャンしたポイントクラウドに直接適用できることを実証した。
関連論文リスト
- SAMPart3D: Segment Any Part in 3D Objects [23.97392239910013]
3D部分のセグメンテーションは、3D知覚において重要な課題であり、ロボット工学、3D生成、および3D編集などのアプリケーションにおいて重要な役割を果たす。
最近の手法では、2次元から3次元の知識蒸留に強力なビジョン言語モデル(VLM)を用いており、ゼロショットの3次元部分分割を実現している。
本研究では,任意の3Dオブジェクトを複数の粒度のセマンティックな部分に分割する,スケーラブルなゼロショット3D部分分割フレームワークであるSAMPart3Dを紹介する。
論文 参考訳(メタデータ) (2024-11-11T17:59:10Z) - SAM-guided Graph Cut for 3D Instance Segmentation [60.75119991853605]
本稿では,3次元画像情報と多視点画像情報の同時利用による3次元インスタンス分割の課題に対処する。
本稿では,3次元インスタンスセグメンテーションのための2次元セグメンテーションモデルを効果的に活用する新しい3D-to-2Dクエリフレームワークを提案する。
本手法は,ロバストなセグメンテーション性能を実現し,異なるタイプのシーンにまたがる一般化を実現する。
論文 参考訳(メタデータ) (2023-12-13T18:59:58Z) - DatasetNeRF: Efficient 3D-aware Data Factory with Generative Radiance Fields [68.94868475824575]
本稿では,無限で高品質な3Dアノテーションを3Dポイントクラウドセグメンテーションとともに生成できる新しいアプローチを提案する。
我々は3次元生成モデルに先立って強力なセマンティクスを活用してセマンティクスデコーダを訓練する。
トレーニングが完了すると、デコーダは遅延空間を効率よく一般化し、無限のデータの生成を可能にする。
論文 参考訳(メタデータ) (2023-11-18T21:58:28Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - Prototype Adaption and Projection for Few- and Zero-shot 3D Point Cloud
Semantic Segmentation [30.18333233940194]
本研究は, 少数ショットとゼロショットの3Dポイントクラウドセマンティックセマンティックセグメンテーションの課題に対処する。
提案手法は,S3DISベンチマークとScanNetベンチマークの2方向1ショット設定により,最先端のアルゴリズムを約7.90%,14.82%上回る。
論文 参考訳(メタデータ) (2023-05-23T17:58:05Z) - MvDeCor: Multi-view Dense Correspondence Learning for Fine-grained 3D
Segmentation [91.6658845016214]
そこで本研究では,2次元領域における自己教師型手法を,微細な3次元形状分割作業に活用することを提案する。
複数のビューから3次元形状を描画し、コントラスト学習フレームワーク内に密接な対応学習タスクを設置する。
その結果、学習された2次元表現はビュー不変であり、幾何学的に一貫性がある。
論文 参考訳(メタデータ) (2022-08-18T00:48:15Z) - Semi-supervised 3D shape segmentation with multilevel consistency and
part substitution [21.075426681857024]
本稿では,ラベル付3次元形状とラベル付3次元データの量から3次元分割を効果的に学習するための半教師付き手法を提案する。
ラベルのないデータに対して,3次元形状の摂動コピー間のネットワーク予測の整合性を確保するために,新しい多レベル整合性損失を提案する。
ラベル付きデータに対して,より構造的な変化を伴ってラベル付き3次元形状を増強し,トレーニングを強化するシンプルな部分置換法を開発した。
論文 参考訳(メタデータ) (2022-04-19T11:48:24Z) - Weakly Supervised Volumetric Image Segmentation with Deformed Templates [80.04326168716493]
対象対象物の表面にスパースな3次元点のセットのみを提供する必要があるという意味で、真に弱い教師付きアプローチを提案する。
監督コストの削減により、3Dの弱スーパービジョンに対する従来のアプローチよりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-07T22:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。