論文の概要: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation
- arxiv url: http://arxiv.org/abs/2503.18944v1
- Date: Mon, 24 Mar 2025 17:59:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-25 14:35:20.403709
- Title: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation
- Title(参考訳): DINO in the Room: 3Dセグメンテーションのための2Dファンデーションモデルを活用する
- Authors: Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe,
- Abstract要約: 大規模な画像データセットに基づいてトレーニングされた視覚基礎モデル(VFM)は、非常に高度な2D視覚認識を備えた高品質な機能を提供する。
3D画像と3Dポイントクラウドデータセットの共通利用にもかかわらず、彼らの3Dビジョンのポテンシャルは依然としてほとんど未解決のままである。
2Dファンデーションモデルの特徴を抽出し,それを3Dに投影し,最終的に3Dポイントクラウドセグメンテーションモデルに注入する,シンプルで効果的なアプローチであるDITRを導入する。
- 参考スコア(独自算出の注目度): 51.43837087865105
- License:
- Abstract: Vision foundation models (VFMs) trained on large-scale image datasets provide high-quality features that have significantly advanced 2D visual recognition. However, their potential in 3D vision remains largely untapped, despite the common availability of 2D images alongside 3D point cloud datasets. While significant research has been dedicated to 2D-3D fusion, recent state-of-the-art 3D methods predominantly focus on 3D data, leaving the integration of VFMs into 3D models underexplored. In this work, we challenge this trend by introducing DITR, a simple yet effective approach that extracts 2D foundation model features, projects them to 3D, and finally injects them into a 3D point cloud segmentation model. DITR achieves state-of-the-art results on both indoor and outdoor 3D semantic segmentation benchmarks. To enable the use of VFMs even when images are unavailable during inference, we further propose to distill 2D foundation models into a 3D backbone as a pretraining task. By initializing the 3D backbone with knowledge distilled from 2D VFMs, we create a strong basis for downstream 3D segmentation tasks, ultimately boosting performance across various datasets.
- Abstract(参考訳): 大規模な画像データセットに基づいてトレーニングされた視覚基礎モデル(VFM)は、非常に高度な2D視覚認識を備えた高品質な機能を提供する。
しかし、3Dポイントクラウドデータセットとともに2Dイメージが一般に利用可能であるにもかかわらず、彼らの3Dビジョンにおけるポテンシャルは、ほとんど未解決のままである。
重要な研究は2D-3D融合に向けられているが、最近の最先端の3D手法は主に3Dデータに焦点を当てており、VFMの3Dモデルへの統合は未調査のままである。
本研究では,2次元ファンデーションモデルの特徴を抽出し,それを3次元に投影し,最終的に3次元ポイントクラウドセグメンテーションモデルに注入するシンプルなアプローチであるDITRを導入することで,この傾向に挑戦する。
DITRは室内および屋外のセマンティックセマンティックセグメンテーションベンチマークで最先端の結果を得る。
推論中に画像が利用できない場合でもVFMを使用できるようにするため,予備訓練作業として2次元基礎モデルを3次元バックボーンに蒸留することを提案する。
2D VFMから抽出した知識で3Dバックボーンを初期化することにより、下流の3Dセグメンテーションタスクの強力な基盤を作り、最終的にはさまざまなデータセットのパフォーマンスを向上する。
関連論文リスト
- ConDense: Consistent 2D/3D Pre-training for Dense and Sparse Features from Multi-View Images [47.682942867405224]
ConDenseは既存の2Dネットワークと大規模マルチビューデータセットを利用した3D事前トレーニングのためのフレームワークである。
組込み型2Dと3Dの特徴をエンドツーエンドのパイプラインで抽出する新しい2D-3Dジョイントトレーニング手法を提案する。
論文 参考訳(メタデータ) (2024-08-30T05:57:01Z) - Improving 2D Feature Representations by 3D-Aware Fine-Tuning [17.01280751430423]
現在の視覚基礎モデルは、構造化されていない2Dデータに基づいて純粋に訓練されている。
3次元認識データの微調整により,出現するセマンティックな特徴の質が向上することを示す。
論文 参考訳(メタデータ) (2024-07-29T17:59:21Z) - Open Vocabulary 3D Scene Understanding via Geometry Guided Self-Distillation [67.36775428466045]
2次元事前学習モデルから優れた3次元表現を学習するための幾何学ガイド自己蒸留(GGSD)を提案する。
3D表現の利点により、蒸留した3D学生モデルの性能は2D教師モデルよりも大幅に上回ることができる。
論文 参考訳(メタデータ) (2024-07-18T10:13:56Z) - VISTA3D: A Unified Segmentation Foundation Model For 3D Medical Imaging [18.111368889931885]
VISTA3D,Versatile Imaging SegmenTation,voxel modelを提案する。
確立された3Dセグメンテーションパイプライン上に構築されている。
これは、3D自動(127クラスのサポート)と3Dインタラクティブセグメンテーションの両方で最先端のパフォーマンスを達成する最初のモデルである。
論文 参考訳(メタデータ) (2024-06-07T22:41:39Z) - Leveraging Large-Scale Pretrained Vision Foundation Models for
Label-Efficient 3D Point Cloud Segmentation [67.07112533415116]
本稿では3Dポイントクラウドセグメンテーションタスクに様々な基礎モデルを適用する新しいフレームワークを提案する。
我々のアプローチでは、異なる大きな視覚モデルを用いて2次元セマンティックマスクの初期予測を行う。
本研究では,ロバストな3Dセマンティックな擬似ラベルを生成するために,投票による全ての結果を効果的に組み合わせたセマンティックなラベル融合戦略を提案する。
論文 参考訳(メタデータ) (2023-11-03T15:41:15Z) - PonderV2: Pave the Way for 3D Foundation Model with A Universal
Pre-training Paradigm [114.47216525866435]
本稿では,効率的な3D表現の獲得を容易にするために,新しいユニバーサル3D事前学習フレームワークを提案する。
PonderV2は、11の室内および屋外ベンチマークで最先端のパフォーマンスを達成したことで、その効果が示唆された。
論文 参考訳(メタデータ) (2023-10-12T17:59:57Z) - Multi-View Representation is What You Need for Point-Cloud Pre-Training [22.55455166875263]
本稿では,事前学習した2次元ネットワークを利用して3次元表現を学習するポイントクラウド事前学習手法を提案する。
我々は,新しい2次元知識伝達損失の助けを借りて,3次元特徴抽出ネットワークを訓練する。
実験結果から,事前学習したモデルを様々な下流タスクに転送できることが判明した。
論文 参考訳(メタデータ) (2023-06-05T03:14:54Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
大規模3次元データリポジトリから抽出した3次元特徴を有効活用し,RGB画像から抽出した2次元特徴を向上する手法を提案する。
まず,事前学習した3Dネットワークから3D知識を抽出して2Dネットワークを監督し,トレーニング中の2D特徴からシミュレーションされた3D特徴を学習する。
次に,2次元の正規化方式を設計し,2次元特徴と3次元特徴のキャリブレーションを行った。
第3に,非ペアの3dデータを用いたトレーニングのフレームワークを拡張するために,意味を意識した対向的トレーニングモデルを設計した。
論文 参考訳(メタデータ) (2021-04-06T02:22:24Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。