Decoupled Training for Long-Tailed Classification With Stochastic
Representations
- URL: http://arxiv.org/abs/2304.09426v1
- Date: Wed, 19 Apr 2023 05:35:09 GMT
- Title: Decoupled Training for Long-Tailed Classification With Stochastic
Representations
- Authors: Giung Nam, Sunguk Jang, Juho Lee
- Abstract summary: Decoupling representation learning and learning has been shown to be effective in classification with long-tailed data.
We first apply Weight Averaging (SWA), an optimization technique for improving generalization of deep neural networks, to obtain better generalizing feature extractors for long-tailed classification.
We then propose a novel classifier re-training algorithm based on perturbed representation obtained from the SWA-Gaussian, a Gaussian SWA, and a self-distillation strategy.
- Score: 15.990318581975435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoupling representation learning and classifier learning has been shown to
be effective in classification with long-tailed data. There are two main
ingredients in constructing a decoupled learning scheme; 1) how to train the
feature extractor for representation learning so that it provides generalizable
representations and 2) how to re-train the classifier that constructs proper
decision boundaries by handling class imbalances in long-tailed data. In this
work, we first apply Stochastic Weight Averaging (SWA), an optimization
technique for improving the generalization of deep neural networks, to obtain
better generalizing feature extractors for long-tailed classification. We then
propose a novel classifier re-training algorithm based on stochastic
representation obtained from the SWA-Gaussian, a Gaussian perturbed SWA, and a
self-distillation strategy that can harness the diverse stochastic
representations based on uncertainty estimates to build more robust
classifiers. Extensive experiments on CIFAR10/100-LT, ImageNet-LT, and
iNaturalist-2018 benchmarks show that our proposed method improves upon
previous methods both in terms of prediction accuracy and uncertainty
estimation.
Related papers
- DRoP: Distributionally Robust Pruning [11.930434318557156]
We conduct the first systematic study of the impact of data pruning on classification bias of trained models.
We propose DRoP, a distributionally robust approach to pruning and empirically demonstrate its performance on standard computer vision benchmarks.
arXiv Detail & Related papers (2024-04-08T14:55:35Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Fixed Random Classifier Rearrangement for Continual Learning [0.5439020425819]
In visual classification scenario, neural networks inevitably forget the knowledge of old tasks after learning new ones.
We propose a continual learning algorithm named Fixed Random Rearrangement (FRCR)
arXiv Detail & Related papers (2024-02-23T09:43:58Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Calibrating Class Activation Maps for Long-Tailed Visual Recognition [60.77124328049557]
We present two effective modifications of CNNs to improve network learning from long-tailed distribution.
First, we present a Class Activation Map (CAMC) module to improve the learning and prediction of network classifiers.
Second, we investigate the use of normalized classifiers for representation learning in long-tailed problems.
arXiv Detail & Related papers (2021-08-29T05:45:03Z) - Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and
Accuracy [9.50143683501477]
Insta-RS is a multiple-start search algorithm that assigns customized Gaussian variances to test examples.
Insta-RS Train is a novel two-stage training algorithm that adaptively adjusts and customizes the noise level of each training example.
We show that our method significantly enhances the average certified radius (ACR) as well as the clean data accuracy.
arXiv Detail & Related papers (2021-03-07T19:46:07Z) - Solving Long-tailed Recognition with Deep Realistic Taxonomic Classifier [68.38233199030908]
Long-tail recognition tackles the natural non-uniformly distributed data in realworld scenarios.
While moderns perform well on populated classes, its performance degrades significantly on tail classes.
Deep-RTC is proposed as a new solution to the long-tail problem, combining realism with hierarchical predictions.
arXiv Detail & Related papers (2020-07-20T05:57:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.