Interpretable Node Representation with Attribute Decoding
- URL: http://arxiv.org/abs/2212.01682v1
- Date: Sat, 3 Dec 2022 20:20:24 GMT
- Title: Interpretable Node Representation with Attribute Decoding
- Authors: Xiaohui Chen, Xi Chen, Liping Liu
- Abstract summary: We show that attribute decoding is important for node representation learning.
We propose a new learning model, interpretable NOde Representation with Attribute Decoding (NORAD)
- Score: 20.591882093727413
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational Graph Autoencoders (VGAEs) are powerful models for unsupervised
learning of node representations from graph data. In this work, we
systematically analyze modeling node attributes in VGAEs and show that
attribute decoding is important for node representation learning. We further
propose a new learning model, interpretable NOde Representation with Attribute
Decoding (NORAD). The model encodes node representations in an interpretable
approach: node representations capture community structures in the graph and
the relationship between communities and node attributes. We further propose a
rectifying procedure to refine node representations of isolated notes,
improving the quality of these nodes' representations. Our empirical results
demonstrate the advantage of the proposed model when learning graph data in an
interpretable approach.
Related papers
- AGHINT: Attribute-Guided Representation Learning on Heterogeneous Information Networks with Transformer [4.01252998015631]
We investigate the impact of inter-node attribute disparities on HGNNs performance within a benchmark task.
We propose a novel Attribute-Guided heterogeneous Information Networks representation learning model with Transformer (AGHINT)
AGHINT transcends the constraints of the original graph structure by directly integrating higher-order similar neighbor features into the learning process.
arXiv Detail & Related papers (2024-04-16T10:30:48Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
Graph neural networks (GNNs) demonstrate a robust capability for representation learning on graphs with complex structures.
A novel GNNs framework, dubbed Decoupled Graph Neural Networks (DGNN), is introduced to obtain a more comprehensive embedding representation of nodes.
Experimental results conducted on several graph benchmark datasets verify DGNN's superiority in node classification task.
arXiv Detail & Related papers (2024-01-28T06:43:13Z) - GraphRARE: Reinforcement Learning Enhanced Graph Neural Network with Relative Entropy [21.553180564868306]
GraphRARE is a framework built upon node relative entropy and deep reinforcement learning.
An innovative node relative entropy is used to measure mutual information between node pairs.
A deep reinforcement learning-based algorithm is developed to optimize the graph topology.
arXiv Detail & Related papers (2023-12-15T11:30:18Z) - Self-Supervised Node Representation Learning via Node-to-Neighbourhood
Alignment [10.879056662671802]
Self-supervised node representation learning aims to learn node representations from unlabelled graphs that rival the supervised counterparts.
In this work, we present simple-yet-effective self-supervised node representation learning via aligning the hidden representations of nodes and their neighbourhood.
We learn node representations that achieve promising node classification performance on a set of graph-structured datasets from small- to large-scale.
arXiv Detail & Related papers (2023-02-09T13:21:18Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Directed Graph Auto-Encoders [3.2873782624127843]
We introduce a new class of auto-encoders for directed graphs motivated by a direct extension of the Weisfeiler-Leman algorithm to pairs of node labels.
We demonstrate the ability of the proposed model to learn meaningful latent embeddings and achieve superior performance on the directed link prediction task.
arXiv Detail & Related papers (2022-02-25T01:19:47Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Self-Supervised Graph Representation Learning via Topology
Transformations [61.870882736758624]
We present the Topology Transformation Equivariant Representation learning, a general paradigm of self-supervised learning for node representations of graph data.
In experiments, we apply the proposed model to the downstream node and graph classification tasks, and results show that the proposed method outperforms the state-of-the-art unsupervised approaches.
arXiv Detail & Related papers (2021-05-25T06:11:03Z) - GraphSVX: Shapley Value Explanations for Graph Neural Networks [81.83769974301995]
Graph Neural Networks (GNNs) achieve significant performance for various learning tasks on geometric data.
In this paper, we propose a unified framework satisfied by most existing GNN explainers.
We introduce GraphSVX, a post hoc local model-agnostic explanation method specifically designed for GNNs.
arXiv Detail & Related papers (2021-04-18T10:40:37Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Multi-grained Semantics-aware Graph Neural Networks [13.720544777078642]
Graph Neural Networks (GNNs) are powerful techniques in representation learning for graphs.
This work proposes a unified model, AdamGNN, to interactively learn node and graph representations.
Experiments on 14 real-world graph datasets show that AdamGNN can significantly outperform 17 competing models on both node- and graph-wise tasks.
arXiv Detail & Related papers (2020-10-01T07:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.