Incorporating Polar Field Data for Improved Solar Flare Prediction
- URL: http://arxiv.org/abs/2212.01730v1
- Date: Sun, 4 Dec 2022 03:06:11 GMT
- Title: Incorporating Polar Field Data for Improved Solar Flare Prediction
- Authors: Mehmet Aktukmak, Zeyu Sun, Monica Bobra, Tamas Gombosi, Ward B.
Manchester, Yang Chen and Alfred Hero
- Abstract summary: We consider incorporating data associated with the sun's north and south polar field strengths to improve solar flare prediction performance using machine learning models.
Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1%.
- Score: 8.035275738176107
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we consider incorporating data associated with the sun's north
and south polar field strengths to improve solar flare prediction performance
using machine learning models. When used to supplement local data from active
regions on the photospheric magnetic field of the sun, the polar field data
provides global information to the predictor. While such global features have
been previously proposed for predicting the next solar cycle's intensity, in
this paper we propose using them to help classify individual solar flares. We
conduct experiments using HMI data employing four different machine learning
algorithms that can exploit polar field information. Additionally, we propose a
novel probabilistic mixture of experts model that can simply and effectively
incorporate polar field data and provide on-par prediction performance with
state-of-the-art solar flare prediction algorithms such as the Recurrent Neural
Network (RNN). Our experimental results indicate the usefulness of the polar
field data for solar flare prediction, which can improve Heidke Skill Score
(HSS2) by as much as 10.1%.
Related papers
- Extreme Solar Flare Prediction Using Residual Networks with HMI Magnetograms and Intensitygrams [0.0]
We present a novel approach for predicting extreme solar flares using HMI intensitygrams and magnetograms.
By detecting sunspots from intensitygrams and extracting magnetic field patches from magnetograms, we train a Residual Network (ResNet) to classify extreme class flares.
Our model demonstrates high accuracy, offering a robust tool for predicting extreme solar flares and improving space weather forecasting.
arXiv Detail & Related papers (2024-05-23T16:17:16Z) - SolNet: Open-source deep learning models for photovoltaic power forecasting across the globe [0.0]
SolNet is a novel, general-purpose, multivariate solar power forecaster.
We show that SolNet improves forecasting performance over data-scarce settings.
We provide guidelines and considerations for transfer learning practitioners.
arXiv Detail & Related papers (2024-05-23T12:00:35Z) - Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data [0.0]
This study proposes using generative deep learning models, specifically a Denoising Diffusion Probabilistic Model (DDPM), to create synthetic images of solar phenomena.
By employing a dataset from the AIA instrument aboard the SDO spacecraft, we aim to address the data scarcity issue.
The DDPM's performance is evaluated using cluster metrics, Frechet Inception Distance (FID), and F1-score, showcasing promising results in generating realistic solar imagery.
arXiv Detail & Related papers (2024-04-03T08:18:45Z) - Neural Plasticity-Inspired Multimodal Foundation Model for Earth Observation [48.66623377464203]
Our novel approach introduces the Dynamic One-For-All (DOFA) model, leveraging the concept of neural plasticity in brain science.
This dynamic hypernetwork, adjusting to different wavelengths, enables a single versatile Transformer jointly trained on data from five sensors to excel across 12 distinct Earth observation tasks.
arXiv Detail & Related papers (2024-03-22T17:11:47Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Long-term drought prediction using deep neural networks based on geospatial weather data [75.38539438000072]
High-quality drought forecasting up to a year in advance is critical for agriculture planning and insurance.
We tackle drought data by introducing an end-to-end approach that adopts a systematic end-to-end approach.
Key findings are the exceptional performance of a Transformer model, EarthFormer, in making accurate short-term (up to six months) forecasts.
arXiv Detail & Related papers (2023-09-12T13:28:06Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - Solar Active Region Magnetogram Image Dataset for Studies of Space
Weather [0.0]
The dataset incorporates data from three sources and provides SDO Helioseismic and Magnetic Imager (HMI) magnetograms of solar active regions.
This dataset will be useful for image analysis or solar physics research related to magnetic structure, its evolution over time, and its relation to solar flares.
This dataset is a minimally processed, user dataset of consistently sized images of solar active regions that can serve as a benchmark dataset for solar flare prediction research.
arXiv Detail & Related papers (2023-05-16T14:44:24Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Solar Power Prediction Using Machine Learning [0.0]
This paper presents a machine learning-based approach for predicting solar power generation with high accuracy using a 99% AUC metric.
The approach includes data collection, pre-processing, feature selection, model selection, training, evaluation, and deployment.
The trained machine learning models are then deployed in a production environment, where they can be used to make real-time predictions about solar power generation.
arXiv Detail & Related papers (2023-03-11T06:31:46Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.