論文の概要: Review on 6D Object Pose Estimation with the focus on Indoor Scene
Understanding
- arxiv url: http://arxiv.org/abs/2212.01920v1
- Date: Sun, 4 Dec 2022 20:45:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:35:36.135921
- Title: Review on 6D Object Pose Estimation with the focus on Indoor Scene
Understanding
- Title(参考訳): 室内シーン理解に着目した6次元物体ポーズ推定法の検討
- Authors: Negar Nejatishahidin and Pooya Fayyazsanavi
- Abstract要約: 6Dオブジェクトのポーズ推定問題はコンピュータビジョンとロボティクスの分野で広く研究されている。
議論の一環として、我々は6Dオブジェクトのポーズ推定が3Dシーンの理解にどのように役立つかに焦点を当てる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 6D object pose estimation problem has been extensively studied in the field
of Computer Vision and Robotics. It has wide range of applications such as
robot manipulation, augmented reality, and 3D scene understanding. With the
advent of Deep Learning, many breakthroughs have been made; however, approaches
continue to struggle when they encounter unseen instances, new categories, or
real-world challenges such as cluttered backgrounds and occlusions. In this
study, we will explore the available methods based on input modality, problem
formulation, and whether it is a category-level or instance-level approach. As
a part of our discussion, we will focus on how 6D object pose estimation can be
used for understanding 3D scenes.
- Abstract(参考訳): 6Dオブジェクトのポーズ推定問題はコンピュータビジョンとロボティクスの分野で広く研究されている。
ロボット操作、拡張現実、そして3dシーン理解といった幅広い応用がある。
ディープラーニングの出現により、多くのブレークスルーが行われたが、見知らぬケースや新しいカテゴリ、あるいは散らかった背景やオクルージョンといった現実世界の課題に遭遇するアプローチは、引き続き苦労している。
本研究では、入力モダリティ、問題定式化、およびそれがカテゴリレベルのアプローチなのかインスタンスレベルのアプローチなのかを考察する。
議論の一環として、我々は6Dオブジェクトのポーズ推定が3Dシーンの理解にどのように役立つかに焦点を当てる。
関連論文リスト
- Markerless Multi-view 3D Human Pose Estimation: a survey [0.49157446832511503]
3D人間のポーズ推定は、複数の関節を検知することで、シーン内のすべての個人の骨格を再構築することを目的としている。
3Dポーズの再構築に関わるすべての課題を解決する方法はまだない。
さらに、高い精度の3Dポーズを計算コストで迅速に推測できるアプローチを開発するためには、さらなる研究が必要である。
論文 参考訳(メタデータ) (2024-07-04T10:44:35Z) - 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for
Robust 6D Pose Estimation [50.15926681475939]
逆グラフィックスは2次元画像から3次元シーン構造を推論することを目的としている。
確率モデルを導入し,不確実性を定量化し,6次元ポーズ推定タスクにおけるロバスト性を実現する。
3DNELは、RGBから学んだニューラルネットワークの埋め込みと深度情報を組み合わせることで、RGB-D画像からのsim-to-real 6Dオブジェクトのポーズ推定の堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-02-07T20:48:35Z) - State of the Art in Dense Monocular Non-Rigid 3D Reconstruction [100.9586977875698]
モノクル2D画像から変形可能なシーン(または非剛体)の3D再構成は、コンピュータビジョンとグラフィックスの長年、活発に研究されてきた領域である。
本研究は,モノクラー映像やモノクラービューの集合から,様々な変形可能な物体や複合シーンを高密度に非剛性で再現するための最先端の手法に焦点を当てる。
論文 参考訳(メタデータ) (2022-10-27T17:59:53Z) - Self-Supervised Geometric Correspondence for Category-Level 6D Object
Pose Estimation in the Wild [47.80637472803838]
本研究では,大規模現実世界のオブジェクトビデオを直接学習し,カテゴリーレベルの6Dポーズ推定を行う自己教師型学習手法を提案する。
本フレームワークは,対象カテゴリの正準3次元形状を再構成し,入力画像と正準形状との密接な対応を表面埋め込みにより学習する。
意外なことに、人間のアノテーションやシミュレータを使わずに、従来の教師付きあるいは半教師付き画像の半教師付き手法よりも、オンパーまたはそれ以上のパフォーマンスを達成できる。
論文 参考訳(メタデータ) (2022-10-13T17:19:22Z) - Weakly Supervised Learning of Keypoints for 6D Object Pose Estimation [73.40404343241782]
2次元キーポイント検出に基づく弱教師付き6次元オブジェクトポーズ推定手法を提案する。
提案手法は,最先端の完全教師付きアプローチと同等の性能を実現する。
論文 参考訳(メタデータ) (2022-03-07T16:23:47Z) - 3D Registration for Self-Occluded Objects in Context [66.41922513553367]
このシナリオを効果的に処理できる最初のディープラーニングフレームワークを紹介します。
提案手法はインスタンスセグメンテーションモジュールとポーズ推定モジュールから構成される。
これにより、高価な反復手順を必要とせず、ワンショットで3D登録を行うことができます。
論文 参考訳(メタデータ) (2020-11-23T08:05:28Z) - SHREC 2020 track: 6D Object Pose Estimation [26.4781238445338]
6Dのポーズ推定は、拡張現実、仮想現実、ロボット操作、視覚ナビゲーションに不可欠である。
異なるポーズ推定法は特徴表現やシーン内容によって異なる長所と短所を持つ。
データ駆動方式で6Dポーズを推定する既存の3Dデータセットには、視野角と解像度が制限されている。
論文 参考訳(メタデータ) (2020-10-19T09:45:42Z) - CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular
Images With Self-Supervised Learning [74.53664270194643]
現代のモノクロ6Dポーズ推定手法は、少数のオブジェクトインスタンスにしか対応できない。
そこで本研究では,計量形状検索と組み合わせて,クラスレベルのモノクル6次元ポーズ推定手法を提案する。
1枚のRGB画像から正確な6Dポーズとメートル法形状を抽出できることを実験的に実証した。
論文 参考訳(メタデータ) (2020-03-12T15:28:13Z) - A Review on Object Pose Recovery: from 3D Bounding Box Detectors to Full
6D Pose Estimators [40.049600223903546]
本稿では,オブジェクトポーズ回復手法の総合的および最新のレビューについて紹介する。
それらの手法は、問題を分類、回帰、分類と回帰、テンプレートマッチング、ポイントペア特徴マッチングタスクとして数学的にモデル化する。
論文 参考訳(メタデータ) (2020-01-28T22:05:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。