論文の概要: Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding
- arxiv url: http://arxiv.org/abs/2212.02014v3
- Date: Fri, 20 Dec 2024 10:21:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-23 16:20:42.167410
- Title: Med-Query: Steerable Parsing of 9-DoF Medical Anatomies with Query Embedding
- Title(参考訳): Med-Query: クエリ埋め込みによる9-DoF医療解剖の静的解析
- Authors: Heng Guo, Jianfeng Zhang, Ke Yan, Le Lu, Minfeng Xu,
- Abstract要約: 我々は,CTスキャンにおける解剖の検出,識別,セグメント化のための,安定かつ堅牢で効率的な計算フレームワークを提案する。
解剖学の複雑な形状、大きさ、配向を考えると、完全な3次元空間における9自由度(9-DoF)のポーズ推定解が提示される。
胸骨,脊椎,腹部臓器の3つの画像解析作業について,本法の有効性を検証した。
- 参考スコア(独自算出の注目度): 14.901279446640393
- License:
- Abstract: Automatic parsing of human anatomies at the instance-level from 3D computed tomography (CT) is a prerequisite step for many clinical applications. The presence of pathologies, broken structures or limited field-of-view (FOV) can all make anatomy parsing algorithms vulnerable. In this work, we explore how to leverage and implement the successful detection-then-segmentation paradigm for 3D medical data, and propose a steerable, robust, and efficient computing framework for detection, identification, and segmentation of anatomies in CT scans. Considering the complicated shapes, sizes, and orientations of anatomies, without loss of generality, we present a nine degrees of freedom (9-DoF) pose estimation solution in full 3D space using a novel single-stage, non-hierarchical representation. Our whole framework is executed in a steerable manner where any anatomy of interest can be directly retrieved to further boost inference efficiency. We have validated our method on three medical imaging parsing tasks: ribs, spine, and abdominal organs. For rib parsing, CT scans have been annotated at the rib instance-level for quantitative evaluation, similarly for spine vertebrae and abdominal organs. Extensive experiments on 9-DoF box detection and rib instance segmentation demonstrate the high efficiency and effectiveness of our framework (with the identification rate of 97.0% and the segmentation Dice score of 90.9%), compared favorably against several strong baselines (e.g., CenterNet, FCOS, and nnU-Net). For spine parsing and abdominal multi-organ segmentation, our method achieves competitive results on par with state-of-the-art methods on the public CTSpine1K dataset and FLARE22 competition, respectively. Our annotations, code, and models are available at: https://github.com/alibaba-damo-academy/Med_Query.
- Abstract(参考訳): 3次元CT(Computerd tomography)のインスタンスレベルでのヒト解剖の自動解析は多くの臨床応用に必須のステップである。
病理、壊れた構造、または限定視野(FOV)の存在は、全て解剖学的解析アルゴリズムを脆弱にすることができる。
そこで本研究では,CTスキャンにおける解剖の発見,識別,分節化のための,安定的で堅牢で効率的な計算フレームワークを提案する。
解剖学の複雑な形状、大きさ、配向を考えると、一般性を失うことなく、新しい単段非階層的表現を用いて、完全な3次元空間において9自由度(9-DoF)のポーズ推定解を提示する。
フレームワーク全体がステアブルな方法で実行され、興味のある解剖が直接検索され、推論効率をさらに高めることができます。
胸骨,脊椎,腹部臓器の3つの画像解析作業について,本法の有効性を検証した。
胸椎や腹部臓器と同様に, 胸部CT検査では, 胸部CT検査にて定量的な評価が試みられている。
9-DoFボックスの検出とリブインスタンスセグメンテーションに関する大規模な実験は、我々のフレームワークの高効率性と有効性(97.0%、セグメンテーションディススコア90.9%)を示し、いくつかの強いベースライン(例えば、CenterNet、FCOS、nnU-Net)と比較した。
CTSpine1KデータセットとFLARE22コンペティションに比較して,脊椎解析と腹腔内多臓器分画について比較検討を行った。
私たちのアノテーション、コード、モデルは、https://github.com/alibaba-damo-academy/Med_Query.comで利用可能です。
関連論文リスト
- CTARR: A fast and robust method for identifying anatomical regions on CT images via atlas registration [0.09130220606101362]
我々はCT解剖学的領域認識のための新しい汎用手法であるCTARRを紹介する。
この方法は、ディープラーニングベースのCT画像解析パイプラインの事前処理ステップとして機能する。
提案手法は, アトラス登録に基づいて, 無ラベルCTスキャンから1つまたは複数の境界ボックスとして符号化された解剖学的領域を抽出する高速かつ堅牢な方法を提供する。
論文 参考訳(メタデータ) (2024-10-03T08:52:21Z) - Anatomy-guided Pathology Segmentation [56.883822515800205]
本研究では, 解剖学的特徴と病理学的情報を組み合わせた汎用的セグメンテーションモデルを構築し, 病理学的特徴のセグメンテーション精度を高めることを目的とする。
我々の解剖学・病理学交流(APEx)訓練では,ヒト解剖学の問合せ表現に結合特徴空間をデコードする問合せベースのセグメンテーション変換器を用いている。
これにより、FDG-PET-CTとChest X-Rayの病理分類タスクにおいて、強力なベースライン法に比べて最大3.3%のマージンで、ボード全体で最高の結果を報告できる。
論文 参考訳(メタデータ) (2024-07-08T11:44:15Z) - Towards Unifying Anatomy Segmentation: Automated Generation of a
Full-body CT Dataset via Knowledge Aggregation and Anatomical Guidelines [113.08940153125616]
我々は533巻のボクセルレベルのラベルを142ドル(約1万2000円)で、全身CTスキャンのデータセットを作成し、解剖学的包括的カバレッジを提供する。
提案手法はラベル集約段階において手作業によるアノテーションに依存しない。
我々はCTデータに142ドルの解剖学的構造を予測できる統一解剖学的セグメンテーションモデルをリリースする。
論文 参考訳(メタデータ) (2023-07-25T09:48:13Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
現在の医療ワークフローは、OAR(Organs-at-risk)のマニュアル記述を必要とする
本研究は,OARローカライゼーション・セグメンテーションのための統合された3Dパイプラインの導入を目的とする。
提案手法は医用画像に固有の3Dコンテキスト情報の活用を可能にする。
論文 参考訳(メタデータ) (2022-03-01T17:08:41Z) - RibSeg Dataset and Strong Point Cloud Baselines for Rib Segmentation
from CT Scans [62.16198969529679]
CT(Computed tomography)スキャンにおける手動リブ検査は臨床的に重要であるが、労働集約的である。
公開データセットから490個のCTスキャン(11,719個のリブ)を含むラベル付きリブセグメンテーションベンチマークemphRibSegを開発した。
入力からスパルスボクセルをしきい値とし,リブセグメンテーションのための点群ベースライン法を設計した。
論文 参考訳(メタデータ) (2021-09-17T16:17:35Z) - Pulmonary Vessel Segmentation based on Orthogonal Fused U-Net++ of Chest
CT Images [1.8692254863855962]
胸部CT画像から肺血管セグメンテーションの枠組みと改善過程について検討した。
アプローチの鍵となるのは、3つの軸から2.5D区分けネットワークを応用し、堅牢で完全に自動化された肺血管区分け結果を示す。
提案手法は,他のネットワーク構造よりも大きなマージンで優れ,平均DICEスコア0.9272,精度0.9310を極端に上回っている。
論文 参考訳(メタデータ) (2021-07-03T21:46:29Z) - RAP-Net: Coarse-to-Fine Multi-Organ Segmentation with Single Random
Anatomical Prior [4.177877537413942]
粗密な腹部マルチオルガンセグメンテーションは、高解像度セグメンテーションの抽出を容易にします。
複数の臓器に対応するモデルに代えて,全腹部臓器を分節する単一改良モデルを提案する。
提案手法は,平均diceスコアが84.58%と,81.69% (p0.0001) の13モデルにおいて,最先端を上回っている。
論文 参考訳(メタデータ) (2020-12-23T00:22:05Z) - 3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass
Segmentation, Diagnosis, and Quantitative Patient Management [21.788423806147378]
膵管腺癌(PDAC)と他の9つの非PDAC腫とを多相CT画像で区別する。
患者レベルの診断を行うための総合的セグメンテーション・メシュ分類網(SMCN)を提案する。
論文 参考訳(メタデータ) (2020-12-08T19:38:01Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。