論文の概要: CTARR: A fast and robust method for identifying anatomical regions on CT images via atlas registration
- arxiv url: http://arxiv.org/abs/2410.02316v1
- Date: Thu, 3 Oct 2024 08:52:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 04:00:02.728471
- Title: CTARR: A fast and robust method for identifying anatomical regions on CT images via atlas registration
- Title(参考訳): CTARR:アトラス登録によるCT画像上の解剖学的領域の迅速かつ堅牢な同定法
- Authors: Thomas Buddenkotte, Roland Opfer, Julia Krüger, Alessa Hering, Mireia Crispin-Ortuzar,
- Abstract要約: 我々はCT解剖学的領域認識のための新しい汎用手法であるCTARRを紹介する。
この方法は、ディープラーニングベースのCT画像解析パイプラインの事前処理ステップとして機能する。
提案手法は, アトラス登録に基づいて, 無ラベルCTスキャンから1つまたは複数の境界ボックスとして符号化された解剖学的領域を抽出する高速かつ堅牢な方法を提供する。
- 参考スコア(独自算出の注目度): 0.09130220606101362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical image analysis tasks often focus on regions or structures located in a particular location within the patient's body. Often large parts of the image may not be of interest for the image analysis task. When using deep-learning based approaches, this causes an unnecessary increases the computational burden during inference and raises the chance of errors. In this paper, we introduce CTARR, a novel generic method for CT Anatomical Region Recognition. The method serves as a pre-processing step for any deep learning-based CT image analysis pipeline by automatically identifying the pre-defined anatomical region that is relevant for the follow-up task and removing the rest. It can be used in (i) image segmentation to prevent false positives in anatomically implausible regions and speeding up the inference, (ii) image classification to produce image crops that are consistent in their anatomical context, and (iii) image registration by serving as a fast pre-registration step. Our proposed method is based on atlas registration and provides a fast and robust way to crop any anatomical region encoded as one or multiple bounding box(es) from any unlabeled CT scan of the brain, chest, abdomen and/or pelvis. We demonstrate the utility and robustness of the proposed method in the context of medical image segmentation by evaluating it on six datasets of public segmentation challenges. The foreground voxels in the regions of interest are preserved in the vast majority of cases and tasks (97.45-100%) while taking only fractions of a seconds to compute (0.1-0.21s) on a deep learning workstation and greatly reducing the segmentation runtime (2.0-12.7x). Our code is available at https://github.com/ThomasBudd/ctarr.
- Abstract(参考訳): 医療画像分析タスクは、しばしば患者の体内の特定の場所に位置する領域や構造に焦点を当てる。
多くの場合、画像の大部分が画像解析タスクには興味がない。
ディープラーニングベースのアプローチを使用する場合、これは推論中の計算負担を不要に増加させ、エラーの可能性を増大させる。
本稿では,CT解剖学的領域認識のための新しい汎用手法であるCTARRを紹介する。
この方法は、フォローアップタスクに関連する予め定義された解剖学的領域を自動的に識別し、残りの領域を除去することにより、ディープラーニングベースのCT画像解析パイプラインの事前処理ステップとして機能する。
使用することができる。
一 解剖学的に不可解な領域における偽陽性を防止し、推論を高速化するための画像分割
二 解剖学的文脈に整合した画像作物を生産するための画像分類、及び
三 迅速な事前登録の段階として画像登録を行うこと。
提案手法はアトラス登録に基づいて,脳,胸部,腹部および骨盤の非ラベルCTスキャンから1つまたは複数の境界ボックスとして符号化された解剖学的領域を抽出する高速かつ堅牢な方法を提供する。
医用画像セグメンテーションの文脈における提案手法の有用性とロバスト性を,公開セグメンテーション課題の6つのデータセット上で評価することによって示す。
関心領域のフォアグラウンドボクセルは、ほとんどのケースやタスク(97.45-100%)で保存され、深層学習ワークステーションで計算するのに1秒(0.1-0.21秒)しかかからず、セグメンテーションランタイム(2.0-12.7x)を大幅に削減する。
私たちのコードはhttps://github.com/ThomasBudd/ctarr.comから入手可能です。
関連論文リスト
- Unsupervised Segmentation of Fetal Brain MRI using Deep Learning
Cascaded Registration [2.494736313545503]
従来の深層学習に基づく自動セグメンテーションは、グランドトラストラベルによる広範なトレーニングデータを必要とする。
ラベル付きデータに頼らずに複数の組織を正確にセグメンテーションするマルチアトラスセグメンテーションに基づく新しい手法を提案する。
提案手法では,3次元画像登録のためのカスケード深層学習ネットワークを用いて,移動画像への小さなインクリメンタルな変形を計算し,それを固定画像と正確に整合させる。
論文 参考訳(メタデータ) (2023-07-07T13:17:12Z) - Region-based Contrastive Pretraining for Medical Image Retrieval with
Anatomic Query [56.54255735943497]
医用画像検索のための地域別コントラスト事前トレーニング(RegionMIR)
医用画像検索のための領域ベースコントラスト事前トレーニング(RegionMIR)について紹介する。
論文 参考訳(メタデータ) (2023-05-09T16:46:33Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
畳み込みニューラルネットワーク(CNN)のフィルタを推定するために,大規模な注釈付きデータセットやバックプロパゲーションを必要としない手法を提案する。
少数のCT画像に対して、ユーザは、代表的な正常領域と異常領域にマーカーを描画する。
本発明の方法は、カーネルがマークされたものに似た拡張領域に特有な一連の畳み込み層からなる特徴抽出器を生成する。
論文 参考訳(メタデータ) (2021-11-16T15:03:42Z) - Learning Fuzzy Clustering for SPECT/CT Segmentation via Convolutional
Neural Networks [5.3123694982708365]
QBSPECT(Quantitative bone single-photon emission Computed Tomography)は、平面骨シンチグラフィよりも骨転移をより定量的に評価する可能性を秘めています。
解剖学的領域-関心(ROI)のセグメント化は、まだ専門家による手動の記述に大きく依存しています。
本研究では,QBSPECT画像を病変,骨,背景に分割するための高速かつ堅牢な自動分割法を提案する。
論文 参考訳(メタデータ) (2021-04-17T19:03:52Z) - A Location-Sensitive Local Prototype Network for Few-Shot Medical Image
Segmentation [11.95230738435115]
そこで本稿では,空間的プリエントを利用して医療画像分割を行うプロトタイプベース手法を提案する。
VISCERAL CT画像データセットにおける臓器セグメンテーション実験では, 平均Dice係数において, 最新のアプローチを10%上回った。
論文 参考訳(メタデータ) (2021-03-18T11:27:19Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
医療画像分割のための新しい手法を提案する。
深層畳み込みネットワークを用いた数ショット画像セグメンタを構築します。
深層埋め込みの識別性を高め,同一クラスの特徴領域のクラスタリングを促進する。
論文 参考訳(メタデータ) (2020-12-10T04:01:07Z) - Explainable Disease Classification via weakly-supervised segmentation [4.154485485415009]
CAD(Computer Aided Diagnosis)に対するディープラーニングアプローチは、画像分類(Normal or Abnormal)問題として問題を引き起こすのが一般的である。
本稿では,この問題を考察し,診断に先立ってエビデンスを探す臨床実践を模倣するアプローチを提案する。
提案法はマンモグラフィー画像から乳癌検出に適応する。
論文 参考訳(メタデータ) (2020-08-24T09:00:30Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - Deep Reinforcement Learning for Organ Localization in CT [59.23083161858951]
我々はCTにおける臓器局所化のための深層強化学習手法を提案する。
この研究において、人工エージェントは、その主張や誤りから学習することで、CT内の臓器の局所化を積極的に行う。
本手法は,任意の臓器をローカライズするためのプラグイン・アンド・プレイモジュールとして利用できる。
論文 参考訳(メタデータ) (2020-05-11T10:06:13Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
3次元CT画像におけるCOVID-19の重症度自動評価のための相乗的学習フレームワークを提案する。
マルチタスクのディープネットワーク(M$2$UNet)が開発され、新型コロナウイルス患者の重症度を評価する。
われわれのM$2$UNetはパッチレベルのエンコーダと肺葉分画のためのセグメンテーションサブネットワークと重度評価のための分類サブネットワークから構成されている。
論文 参考訳(メタデータ) (2020-05-08T03:16:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。