論文の概要: Graph Convolutional Neural Networks with Diverse Negative Samples via
Decomposed Determinant Point Processes
- arxiv url: http://arxiv.org/abs/2212.02055v1
- Date: Mon, 5 Dec 2022 06:31:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-06 18:08:55.174291
- Title: Graph Convolutional Neural Networks with Diverse Negative Samples via
Decomposed Determinant Point Processes
- Title(参考訳): 逆負のサンプルを持つグラフ畳み込みニューラルネットワークの分解決定点過程
- Authors: Wei Duan, Junyu Xuan, Maoying Qiao, Jie Lu
- Abstract要約: グラフ畳み込みネットワーク(GCN)はグラフ表現学習において大きな成功を収めている。
本稿では, 様々な負のサンプルを得るために, 品質多様性の分解を決定点過程に用いた。
本稿では,計算効率を向上させるための最短パスベース手法を提案する。
- 参考スコア(独自算出の注目度): 19.588559820438718
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph convolutional networks (GCNs) have achieved great success in graph
representation learning by extracting high-level features from nodes and their
topology. Since GCNs generally follow a message-passing mechanism, each node
aggregates information from its first-order neighbour to update its
representation. As a result, the representations of nodes with edges between
them should be positively correlated and thus can be considered positive
samples. However, there are more non-neighbour nodes in the whole graph, which
provide diverse and useful information for the representation update. Two
non-adjacent nodes usually have different representations, which can be seen as
negative samples. Besides the node representations, the structural information
of the graph is also crucial for learning. In this paper, we used
quality-diversity decomposition in determinant point processes (DPP) to obtain
diverse negative samples. When defining a distribution on diverse subsets of
all non-neighbouring nodes, we incorporate both graph structure information and
node representations. Since the DPP sampling process requires matrix eigenvalue
decomposition, we propose a new shortest-path-base method to improve
computational efficiency. Finally, we incorporate the obtained negative samples
into the graph convolution operation. The ideas are evaluated empirically in
experiments on node classification tasks. These experiments show that the newly
proposed methods not only improve the overall performance of standard
representation learning but also significantly alleviate over-smoothing
problems.
- Abstract(参考訳): グラフ畳み込みネットワーク(GCN)は,ノードとそのトポロジから高レベル特徴を抽出することにより,グラフ表現学習において大きな成功を収めている。
GCNは一般的にメッセージパッシング機構に従うため、各ノードはその表現を更新するためにその1階目の隣人からの情報を集約する。
結果として、エッジを持つノードの表現は正の相関関係を持つべきであり、したがって正のサンプルと見なすことができる。
しかし、グラフ全体の非隣接ノードはより多く存在し、表現更新に多様で有用な情報を提供する。
2つの非隣接ノードは通常異なる表現を持ち、負のサンプルと見なすことができる。
ノード表現以外にも、グラフの構造情報は学習にも不可欠である。
本稿では,DPP(Determinant point process)における品質多様性分解を用いて,様々な負のサンプルを得た。
非隣接ノードの様々な部分集合上の分布を定義する際、グラフ構造情報とノード表現の両方を組み込む。
DPPサンプリングは行列固有値分解を必要とするため,計算効率を向上させるための最短パスベース法を提案する。
最後に,得られた負のサンプルをグラフ畳み込み演算に組み込む。
これらのアイデアは、ノード分類タスクの実験で実証的に評価される。
これらの実験により, 提案手法は, 標準表現学習の全体的な性能を向上させるだけでなく, 過小評価問題を大幅に軽減することを示した。
関連論文リスト
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
論文 参考訳(メタデータ) (2024-07-03T02:40:39Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
本稿では,任意のノード間のノード信号を効率的に伝搬する全ペアメッセージパッシング方式を提案する。
効率的な計算は、カーナライズされたGumbel-Softmax演算子によって実現される。
グラフ上のノード分類を含む様々なタスクにおいて,本手法の有望な有効性を示す実験を行った。
論文 参考訳(メタデータ) (2023-06-14T09:21:15Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
本稿では,シーケンシャルノード表現,すなわちSeq-HGNNを用いた新しい異種グラフニューラルネットワークを提案する。
Heterogeneous Graph Benchmark (HGB) と Open Graph Benchmark (OGB) の4つの広く使われているデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2023-05-18T07:27:18Z) - STERLING: Synergistic Representation Learning on Bipartite Graphs [78.86064828220613]
二部グラフ表現学習の基本的な課題は、ノードの埋め込みを抽出する方法である。
最近の二部グラフSSL法は、正ノード対と負ノード対を識別することによって埋め込みを学習する対照的な学習に基づいている。
負のノードペアを持たないノード埋め込みを学習するための新しい相乗的表現学習モデル(STERling)を提案する。
論文 参考訳(メタデータ) (2023-01-25T03:21:42Z) - Learning from the Dark: Boosting Graph Convolutional Neural Networks
with Diverse Negative Samples [19.588559820438718]
グラフは、大きく、暗く、すべて忘れられた世界を持ち、隣り合うノード(負のサンプル)を見つける。
この大暗黒世界は、表現学習に役立つかもしれない膨大な量の情報を持っていることを示す。
我々の全体的な考え方は、各ノードに対して適切な負のサンプルを選択し、これらのサンプルに含まれる負の情報を表現更新に組み込むことである。
論文 参考訳(メタデータ) (2022-10-03T06:14:21Z) - Node Representation Learning in Graph via Node-to-Neighbourhood Mutual
Information Maximization [27.701736055800314]
グラフにおける情報ノード表現の学習の鍵は、近隣からコンテキスト情報を得る方法にある。
本稿では,ノードの隠蔽表現と周辺領域の相互情報を直接的に最大化することで,自己教師付きノード表現学習戦略を提案する。
我々のフレームワークは、表現学習の質と効率を裏付ける正の選択が相反する比較的損失によって最適化されている。
論文 参考訳(メタデータ) (2022-03-23T08:21:10Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
本稿では,グラフ全体を部分的に観測されたマルコフ確率場としてモデル化するEPFGNN(Explicit Pairwise Factorized Graph Neural Network)を提案する。
出力-出力関係をモデル化するための明示的なペアワイズ要素を含み、入力-出力関係をモデル化するためにGNNバックボーンを使用する。
本研究では,グラフ上での半教師付きノード分類の性能を効果的に向上できることを示す。
論文 参考訳(メタデータ) (2021-07-27T19:47:53Z) - CatGCN: Graph Convolutional Networks with Categorical Node Features [99.555850712725]
CatGCNはグラフ学習に適したノード機能である。
エンドツーエンドでCatGCNを訓練し、半教師付きノード分類でそれを実証する。
論文 参考訳(メタデータ) (2020-09-11T09:25:17Z) - Sequential Graph Convolutional Network for Active Learning [53.99104862192055]
逐次グラフ畳み込みネットワーク(GCN)を用いた新しいプールベースアクティブラーニングフレームワークを提案する。
少数のランダムなサンプル画像がシードラベル付き例であるので、グラフのパラメータを学習してラベル付きノードと非ラベル付きノードを区別する。
我々はGCNの特性を利用してラベル付けされたものと十分に異なる未ラベルの例を選択する。
論文 参考訳(メタデータ) (2020-06-18T00:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。