L2SR: Learning to Sample and Reconstruct for Accelerated MRI via Reinforcement Learning
- URL: http://arxiv.org/abs/2212.02190v3
- Date: Sat, 6 Apr 2024 04:59:12 GMT
- Title: L2SR: Learning to Sample and Reconstruct for Accelerated MRI via Reinforcement Learning
- Authors: Pu Yang, Bin Dong,
- Abstract summary: We propose an alternating training framework for jointly learning a good pair of samplers and reconstructors.
L2SR learns a pair of samplers and reconstructors that achieve state-of-the-art reconstruction performances on the fastMRI dataset.
- Score: 4.955697042432618
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnetic Resonance Imaging (MRI) is a widely used medical imaging technique, but its long acquisition time can be a limiting factor in clinical settings. To address this issue, researchers have been exploring ways to reduce the acquisition time while maintaining the reconstruction quality. Previous works have focused on finding either sparse samplers with a fixed reconstructor or finding reconstructors with a fixed sampler. However, these approaches do not fully utilize the potential of joint learning of samplers and reconstructors. In this paper, we propose an alternating training framework for jointly learning a good pair of samplers and reconstructors via deep reinforcement learning (RL). In particular, we consider the process of MRI sampling as a sampling trajectory controlled by a sampler, and introduce a novel sparse-reward Partially Observed Markov Decision Process (POMDP) to formulate the MRI sampling trajectory. Compared to the dense-reward POMDP used in existing works, the proposed sparse-reward POMDP is more computationally efficient and has a provable advantage. Moreover, the proposed framework, called L2SR (Learning to Sample and Reconstruct), overcomes the training mismatch problem that arises in previous methods that use dense-reward POMDP. By alternately updating samplers and reconstructors, L2SR learns a pair of samplers and reconstructors that achieve state-of-the-art reconstruction performances on the fastMRI dataset. Codes are available at \url{https://github.com/yangpuPKU/L2SR-Learning-to-Sample-and-Reconstruct}.
Related papers
- LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
A Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method is proposed.
A sketcher module is utilized to provide appropriate control and balance the quality and fidelity of the reconstructed MR images.
A VAE adapted for MRI tasks (MR-VAE) is explored, which can serve as the backbone for future MR-related tasks.
arXiv Detail & Related papers (2024-11-05T09:51:59Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
We present a learning method to optimize sub-sampling patterns for compressed sensing multi-coil MRI.
We use a single-step reconstruction based on the posterior mean estimate given by the diffusion model and the MRI measurement process.
Our method requires as few as five training images to learn effective sampling patterns.
arXiv Detail & Related papers (2023-06-05T22:09:06Z) - Rethinking the optimization process for self-supervised model-driven MRI
reconstruction [16.5013498806588]
K2Calibrate is a K-space adaptation strategy for self-supervised model-driven MR reconstruction optimization.
It can reduce the network's reconstruction deterioration caused by statistically dependent noise.
It achieves better results than five state-of-the-art methods.
arXiv Detail & Related papers (2022-03-18T03:41:36Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseRecon is a novel diffusion model-based MR reconstruction method.
It guides the generation process based on the observed signals.
It does not require additional training on specific acceleration factors.
arXiv Detail & Related papers (2022-03-08T02:25:38Z) - ReconFormer: Accelerated MRI Reconstruction Using Recurrent Transformer [60.27951773998535]
We propose a recurrent transformer model, namely textbfReconFormer, for MRI reconstruction.
It can iteratively reconstruct high fertility magnetic resonance images from highly under-sampled k-space data.
We show that it achieves significant improvements over the state-of-the-art methods with better parameter efficiency.
arXiv Detail & Related papers (2022-01-23T21:58:19Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
We propose a novel Texture Transformer Module (TTM) for accelerated MRI reconstruction.
We formulate the under-sampled data and reference data as queries and keys in a transformer.
The proposed TTM can be stacked on prior MRI reconstruction approaches to further improve their performance.
arXiv Detail & Related papers (2021-11-18T03:06:25Z) - Self-Supervised Learning for MRI Reconstruction with a Parallel Network
Training Framework [24.46388892324129]
The proposed method is flexible and can be employed in any existing deep learning-based method.
The effectiveness of the method is evaluated on an open brain MRI dataset.
arXiv Detail & Related papers (2021-09-26T06:09:56Z) - End-to-End Sequential Sampling and Reconstruction for MR Imaging [37.29958197193658]
We propose a framework that learns a sequential sampling policy simultaneously with a reconstruction strategy.
Our proposed method outperforms the current state-of-the-art learned k-space sampling baseline on up to 96.96% of test samples.
arXiv Detail & Related papers (2021-05-13T17:56:18Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
Deep learning methods have been shown to produce superior performance on MR image reconstruction.
These methods require large amounts of data which is difficult to collect and share due to the high cost of acquisition and medical data privacy regulations.
We propose a federated learning (FL) based solution in which we take advantage of the MR data available at different institutions while preserving patients' privacy.
arXiv Detail & Related papers (2021-03-03T03:04:40Z) - Modal Regression based Structured Low-rank Matrix Recovery for
Multi-view Learning [70.57193072829288]
Low-rank Multi-view Subspace Learning has shown great potential in cross-view classification in recent years.
Existing LMvSL based methods are incapable of well handling view discrepancy and discriminancy simultaneously.
We propose Structured Low-rank Matrix Recovery (SLMR), a unique method of effectively removing view discrepancy and improving discriminancy.
arXiv Detail & Related papers (2020-03-22T03:57:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.