論文の概要: A Hybrid Evolutionary Approach to Solve University Course Allocation
Problem
- arxiv url: http://arxiv.org/abs/2212.02230v2
- Date: Mon, 24 Jul 2023 06:23:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-26 00:20:48.436612
- Title: A Hybrid Evolutionary Approach to Solve University Course Allocation
Problem
- Title(参考訳): 大学進路割当問題に対するハイブリッド進化的アプローチ
- Authors: Dibyo Fabian Dofadar, Riyo Hayat Khan, Shafqat Hasan, Towshik Anam
Taj, Arif Shakil, Mahbub Majumdar
- Abstract要約: 本稿では,大学授業割当問題に関わる課題を克服するための様々な制約,難易度,解決策について論じる。
局所補修アルゴリズムと修正遺伝的アルゴリズムを組み合わせたハイブリッド進化アルゴリズムが定義されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper discusses various types of constraints, difficulties and solutions
to overcome the challenges regarding university course allocation problem. A
hybrid evolutionary algorithm has been defined combining Local Repair Algorithm
and Modified Genetic Algorithm to generate the best course assignment. After
analyzing the collected dataset, all the necessary constraints were formulated.
These constraints manage to cover the aspects needed to be kept in mind while
preparing clash free and efficient class schedules for every faculty member.
The goal is to generate an optimized solution which will fulfill those
constraints while maintaining time efficiency and also reduce the workload of
handling this task manually. The proposed algorithm was compared with some base
level optimization algorithms to show the better efficiency in terms of
accuracy and time.
- Abstract(参考訳): 本稿では,大学進路割当問題に関する課題を克服するための様々な制約,困難,解決策について述べる。
最適なコース割り当てを生成するために、局所修復アルゴリズムと修正遺伝的アルゴリズムを組み合わせたハイブリッド進化アルゴリズムが定義されている。
収集したデータセットを分析した後、必要な制約をすべて定式化した。
これらの制約は、各教職員の衝突のない効率的な授業スケジュールを準備しながら、留意すべき側面をカバーする。
目標は、時間効率を維持しながら、これらの制約を満たす最適化ソリューションを生成し、また、このタスクを手動で処理するワークロードを削減することである。
提案アルゴリズムをベースレベル最適化アルゴリズムと比較し,精度と時間面での効率性を示した。
関連論文リスト
- A Double Tracking Method for Optimization with Decentralized Generalized Orthogonality Constraints [4.6796315389639815]
分散最適化問題は分散制約の存在下では解決できない。
目的関数の勾配と制約写像のヤコビアンを同時に追跡する新しいアルゴリズムを導入する。
合成と実世界の両方のデータセットに数値的な結果を示す。
論文 参考訳(メタデータ) (2024-09-08T06:57:35Z) - Genetic-based Constraint Programming for Resource Constrained Job
Scheduling [5.068093754585243]
資源制約されたジョブスケジューリングは、鉱業に起源を持つ計算の最適化問題である。
既成のソリューションはこの問題を合理的な時間枠で十分解決できない。
本稿では,制約プログラミングの効率的な探索手法を探索する遺伝的プログラミングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-01T09:57:38Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - An Overview and Experimental Study of Learning-based Optimization
Algorithms for Vehicle Routing Problem [49.04543375851723]
車両ルーティング問題(VRP)は典型的な離散最適化問題である。
多くの研究は、VRPを解決するための学習に基づく最適化アルゴリズムについて検討している。
本稿では、最近のこの分野の進歩を概観し、関連するアプローチをエンドツーエンドアプローチとステップバイステップアプローチに分割する。
論文 参考訳(メタデータ) (2021-07-15T02:13:03Z) - A Bi-Level Framework for Learning to Solve Combinatorial Optimization on
Graphs [91.07247251502564]
本稿では,2つの世界の長所を結合するハイブリッドな手法を提案する。この手法では,グラフを最適化する上層学習手法とバイレベルフレームワークを開発する。
このような二段階のアプローチは、元のハードCOでの学習を単純化し、モデルキャパシティの需要を効果的に軽減することができる。
論文 参考訳(メタデータ) (2021-06-09T09:18:18Z) - An Intelligent Model for Solving Manpower Scheduling Problems [22.247926891283537]
本稿では,マルチ制約条件下でのマンパワースケジューリング問題を組合せ最適化問題に変換する。
また、論理的パラダイムを用いて問題解の数学的モデルを構築し、モデルを解くための改良された多次元進化アルゴリズムも構築する。
論文 参考訳(メタデータ) (2021-05-07T23:51:12Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
本稿では、強化学習(RL)と従来の運用研究(OR)アルゴリズムを組み合わせた2段階のフレームワークを開発する。
スケジューリング問題は,有限マルコフ決定過程 (MDP) と混合整数計画過程 (mixed-integer programming process) の2段階で解決される。
その結果,本アルゴリズムは,アジャイルな地球観測衛星スケジューリング問題に対して,安定かつ効率的に十分なスケジューリング計画を得ることができた。
論文 参考訳(メタデータ) (2021-03-10T03:16:12Z) - Learning to Optimize Under Constraints with Unsupervised Deep Neural
Networks [0.0]
機械学習(ML)手法を提案し,汎用的制約付き連続最適化問題の解法を学習する。
本稿では,制約付き最適化問題をリアルタイムに解くための教師なしディープラーニング(DL)ソリューションを提案する。
論文 参考訳(メタデータ) (2021-01-04T02:58:37Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。