Energy-based Generative Models for Target-specific Drug Discovery
- URL: http://arxiv.org/abs/2212.02404v1
- Date: Mon, 5 Dec 2022 16:41:36 GMT
- Title: Energy-based Generative Models for Target-specific Drug Discovery
- Authors: Junde Li, Collin Beaudoin, Swaroop Ghosh
- Abstract summary: We develop an energy-based probabilistic model for computational target-specific drug discovery.
Results show that our proposed TagMol can generate molecules with similar binding affinity scores as real molecules.
- Score: 7.509129971169722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Drug targets are the main focus of drug discovery due to their key role in
disease pathogenesis. Computational approaches are widely applied to drug
development because of the increasing availability of biological molecular
datasets. Popular generative approaches can create new drug molecules by
learning the given molecule distributions. However, these approaches are mostly
not for target-specific drug discovery. We developed an energy-based
probabilistic model for computational target-specific drug discovery. Results
show that our proposed TagMol can generate molecules with similar binding
affinity scores as real molecules. GAT-based models showed faster and better
learning relative to GCN baseline models.
Related papers
- FARM: Functional Group-Aware Representations for Small Molecules [55.281754551202326]
We introduce Functional Group-Aware Representations for Small Molecules (FARM)
FARM is a foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs.
We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 10 out of 12 tasks.
arXiv Detail & Related papers (2024-10-02T23:04:58Z) - Cell Morphology-Guided Small Molecule Generation with GFlowNets [41.8027680592766]
We propose an unsupervised multimodal joint embedding to define a latent similarity as a reward for GFlowNets.
The proposed model learns to generate new molecules that could produce phenotypic effects similar to those of the given image target.
We demonstrate that the proposed method generates molecules with high morphological and structural similarity to the target, increasing the likelihood of similar biological activity.
arXiv Detail & Related papers (2024-08-09T17:40:35Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Molecule Design by Latent Space Energy-Based Modeling and Gradual
Distribution Shifting [53.44684898432997]
Generation of molecules with desired chemical and biological properties is critical for drug discovery.
We propose a probabilistic generative model to capture the joint distribution of molecules and their properties.
Our method achieves very strong performances on various molecule design tasks.
arXiv Detail & Related papers (2023-06-09T03:04:21Z) - Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks [0.0]
We propose an end-to-end generative system, DrugGEN, for the de novo design of drug candidate molecules.
The system is trained using a large dataset of drug-like compounds and target-specific bioactive molecules.
Using the open-access DrugGEN, it is possible to easily train models for other druggable proteins.
arXiv Detail & Related papers (2023-02-15T18:59:27Z) - Drug-target affinity prediction method based on consistent expression of
heterogeneous data [0.0]
We propose a method for predicting drug-target binding affinity using deep learning models.
The proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.
arXiv Detail & Related papers (2022-11-13T02:58:03Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - A biologically-inspired evaluation of molecular generative machine
learning [17.623886600638716]
A novel biologically-inspired benchmark for the evaluation of molecular generative models is proposed.
We propose a recreation metric, apply drug-target affinity prediction and molecular docking as complementary techniques for the evaluation of generative outputs.
arXiv Detail & Related papers (2022-08-20T11:01:10Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z) - Learn molecular representations from large-scale unlabeled molecules for
drug discovery [19.222413268610808]
Molecular Pre-training Graph-based deep learning framework, named MPG, leans molecular representations from large-scale unlabeled molecules.
MolGNet can capture valuable chemistry insights to produce interpretable representation.
MPG is promising to become a novel approach in the drug discovery pipeline.
arXiv Detail & Related papers (2020-12-21T08:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.