Drug-target affinity prediction method based on consistent expression of
heterogeneous data
- URL: http://arxiv.org/abs/2211.06792v1
- Date: Sun, 13 Nov 2022 02:58:03 GMT
- Title: Drug-target affinity prediction method based on consistent expression of
heterogeneous data
- Authors: Boyuan Liu
- Abstract summary: We propose a method for predicting drug-target binding affinity using deep learning models.
The proposed model demonstrates its accuracy and effectiveness in predicting drug-target binding affinity on the DAVIS and KIBA datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The first step in drug discovery is finding drug molecule moieties with
medicinal activity against specific targets. Therefore, it is crucial to
investigate the interaction between drug-target proteins and small chemical
molecules. However, traditional experimental methods for discovering potential
small drug molecules are labor-intensive and time-consuming. There is currently
a lot of interest in building computational models to screen small drug
molecules using drug molecule-related databases. In this paper, we propose a
method for predicting drug-target binding affinity using deep learning models.
This method uses a modified GRU and GNN to extract features from the
drug-target protein sequences and the drug molecule map, respectively, to
obtain their feature vectors. The combined vectors are used as vector
representations of drug-target molecule pairs and then fed into a fully
connected network to predict drug-target binding affinity. This proposed model
demonstrates its accuracy and effectiveness in predicting drug-target binding
affinity on the DAVIS and KIBA datasets.
Related papers
- GramSeq-DTA: A grammar-based drug-target affinity prediction approach fusing gene expression information [1.2289361708127877]
We propose GramSeq-DTA, which integrates chemical perturbation information with the structural information of drugs and targets.
Our approach outperforms the current state-of-the-art DTA prediction models when validated on widely used DTA datasets.
arXiv Detail & Related papers (2024-11-03T03:17:09Z) - A Cross-Field Fusion Strategy for Drug-Target Interaction Prediction [85.2792480737546]
Existing methods fail to utilize global protein information during DTI prediction.
Cross-field information fusion strategy is employed to acquire local and global protein information.
Siamese drug-target interaction SiamDTI prediction method achieves higher accuracy levels than other state-of-the-art (SOTA) methods on novel drugs and targets.
arXiv Detail & Related papers (2024-05-23T13:25:20Z) - DecompDiff: Diffusion Models with Decomposed Priors for Structure-Based Drug Design [62.68420322996345]
Existing structured-based drug design methods treat all ligand atoms equally.
We propose a new diffusion model, DecompDiff, with decomposed priors over arms and scaffold.
Our approach achieves state-of-the-art performance in generating high-affinity molecules.
arXiv Detail & Related papers (2024-02-26T05:21:21Z) - PGraphDTA: Improving Drug Target Interaction Prediction using Protein
Language Models and Contact Maps [4.590060921188914]
Key aspect of drug discovery involves identifying novel drug-target (DT) interactions.
Protein-ligand interactions exhibit a continuum of binding strengths, known as binding affinity.
We propose novel enhancements to enhance their performance.
arXiv Detail & Related papers (2023-10-06T05:00:25Z) - Target Specific De Novo Design of Drug Candidate Molecules with Graph Transformer-based Generative Adversarial Networks [0.0]
We propose an end-to-end generative system, DrugGEN, for the de novo design of drug candidate molecules.
The system is trained using a large dataset of drug-like compounds and target-specific bioactive molecules.
Using the open-access DrugGEN, it is possible to easily train models for other druggable proteins.
arXiv Detail & Related papers (2023-02-15T18:59:27Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
Drug combination therapy is a well-established strategy for disease treatment with better effectiveness and less safety degradation.
Deep learning models have emerged as an efficient way to discover synergistic combinations.
Our framework achieves state-of-the-art results in comparison with other deep learning-based methods.
arXiv Detail & Related papers (2023-01-14T15:07:43Z) - Energy-based Generative Models for Target-specific Drug Discovery [7.509129971169722]
We develop an energy-based probabilistic model for computational target-specific drug discovery.
Results show that our proposed TagMol can generate molecules with similar binding affinity scores as real molecules.
arXiv Detail & Related papers (2022-12-05T16:41:36Z) - Tailoring Molecules for Protein Pockets: a Transformer-based Generative
Solution for Structured-based Drug Design [133.1268990638971]
De novo drug design based on the structure of a target protein can provide novel drug candidates.
We present a generative solution named TamGent that can directly generate candidate drugs from scratch for a given target.
arXiv Detail & Related papers (2022-08-30T09:32:39Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Associative Learning Mechanism for Drug-Target Interaction Prediction [6.107658437700639]
Drug-target affinity (DTA) represents the strength of drug-target interaction (DTI)
Traditional methods lack the interpretability of the DTA prediction process.
This paper proposes a DTA prediction method with interactive learning and an autoencoder mechanism.
arXiv Detail & Related papers (2022-05-24T14:25:28Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
We propose a novel approach to model intermolecular information with a three-way Transformer-based architecture.
Intermolecular Graph Transformer (IGT) outperforms state-of-the-art approaches by 9.1% and 20.5% over the second best for binding activity and binding pose prediction respectively.
IGT exhibits promising drug screening ability against SARS-CoV-2 by identifying 83.1% active drugs that have been validated by wet-lab experiments with near-native predicted binding poses.
arXiv Detail & Related papers (2021-10-14T13:28:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.