Measuring Arbitrary Physical Properties in Analog Quantum Simulation
- URL: http://arxiv.org/abs/2212.02517v2
- Date: Fri, 31 Mar 2023 21:49:40 GMT
- Title: Measuring Arbitrary Physical Properties in Analog Quantum Simulation
- Authors: Minh C. Tran, Daniel K. Mark, Wen Wei Ho, and Soonwon Choi
- Abstract summary: A central challenge in analog quantum simulation is to characterize desirable physical properties of quantum states produced in experiments.
We propose and analyze a scalable protocol that leverages the ergodic nature of generic quantum dynamics.
Our protocol excitingly promises to overcome limited controllability and, thus, enhance the versatility and utility of near-term quantum technologies.
- Score: 0.5999777817331317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A central challenge in analog quantum simulation is to characterize desirable
physical properties of quantum states produced in experiments. However, in
conventional approaches, the extraction of arbitrary information requires
performing measurements in many different bases, which necessitates a high
level of control that present-day quantum devices may not have. Here, we
propose and analyze a scalable protocol that leverages the ergodic nature of
generic quantum dynamics, enabling the efficient extraction of many physical
properties. The protocol does not require sophisticated controls and can be
generically implemented in analog quantum simulation platforms today. Our
protocol involves introducing ancillary degrees of freedom in a predetermined
state to a system of interest, quenching the joint system under Hamiltonian
dynamics native to the particular experimental platform, and then measuring
globally in a single, fixed basis. We show that arbitrary information of the
original quantum state is contained within such measurement data, and can be
extracted using a classical data-processing procedure. We numerically
demonstrate our approach with a number of examples, including the measurements
of entanglement entropy, many-body Chern number, and various superconducting
orders in systems of neutral atom arrays, bosonic and fermionic particles on
optical lattices, respectively, only assuming existing technological
capabilities. Our protocol excitingly promises to overcome limited
controllability and, thus, enhance the versatility and utility of near-term
quantum technologies.
Related papers
- Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - Predicting Arbitrary State Properties from Single Hamiltonian Quench Dynamics [0.8639941465436463]
We introduce the Hamiltonian shadow protocol, which estimates arbitrary state properties on analog quantum simulators.
The protocol does not require sophisticated control and can be applied to a wide range of analog quantum simulators.
arXiv Detail & Related papers (2023-11-01T17:52:23Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Mimicking states with limited resources: passing quantum quiz via global
control [0.0]
We propose, analyze, and optimize a protocol which allows fast simulation of properties of unknown quantum states.
Our protocol, having common features with quantum identification and shortcuts to adiabaticity, permits avoiding adiabaticity catastrophe.
arXiv Detail & Related papers (2022-08-17T23:18:02Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Benchmarking Quantum Simulators using Ergodic Quantum Dynamics [4.2392660892009255]
We analyze a sample-efficient protocol to estimate the fidelity between an experimentally prepared state and an ideal state.
We numerically demonstrate our protocol for a variety of quantum simulator platforms.
arXiv Detail & Related papers (2022-05-24T17:18:18Z) - The randomized measurement toolbox [3.2095357952052854]
We review recently developed protocols for probing the properties of complex many-qubit systems.
In all these protocols, a quantum state is repeatedly prepared and measured in a randomly chosen basis.
We discuss a range of use cases that have already been realized in quantum devices.
arXiv Detail & Related papers (2022-03-21T22:33:18Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.