Can Ensembling Pre-processing Algorithms Lead to Better Machine Learning
Fairness?
- URL: http://arxiv.org/abs/2212.02614v1
- Date: Mon, 5 Dec 2022 21:54:29 GMT
- Title: Can Ensembling Pre-processing Algorithms Lead to Better Machine Learning
Fairness?
- Authors: Khaled Badran, Pierre-Olivier C\^ot\'e, Amanda Kolopanis, Rached
Bouchoucha, Antonio Collante, Diego Elias Costa, Emad Shihab, Foutse Khomh
- Abstract summary: Several fairness pre-processing algorithms are available to alleviate implicit biases during model training.
These algorithms employ different concepts of fairness, often leading to conflicting strategies with consequential trade-offs between fairness and accuracy.
We evaluate three popular fairness pre-processing algorithms and investigate the potential for combining all algorithms into a more robust pre-processing ensemble.
- Score: 8.679212948810916
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As machine learning (ML) systems get adopted in more critical areas, it has
become increasingly crucial to address the bias that could occur in these
systems. Several fairness pre-processing algorithms are available to alleviate
implicit biases during model training. These algorithms employ different
concepts of fairness, often leading to conflicting strategies with
consequential trade-offs between fairness and accuracy. In this work, we
evaluate three popular fairness pre-processing algorithms and investigate the
potential for combining all algorithms into a more robust pre-processing
ensemble. We report on lessons learned that can help practitioners better
select fairness algorithms for their models.
Related papers
- Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
Recent advances in algorithmic design show how to utilize predictions obtained by machine learning models from past and present data.
Prior research in this context was focused on a paradigm where the predictor is pre-trained on past data and then used as a black box.
In this work, we unpack the predictor and integrate the learning problem it gives rise for within the algorithmic challenge.
arXiv Detail & Related papers (2024-03-12T08:40:21Z) - Boosting Fair Classifier Generalization through Adaptive Priority Reweighing [59.801444556074394]
A performance-promising fair algorithm with better generalizability is needed.
This paper proposes a novel adaptive reweighing method to eliminate the impact of the distribution shifts between training and test data on model generalizability.
arXiv Detail & Related papers (2023-09-15T13:04:55Z) - Measuring, Interpreting, and Improving Fairness of Algorithms using
Causal Inference and Randomized Experiments [8.62694928567939]
We present an algorithm-agnostic framework (MIIF) to Measure, Interpret, and Improve the Fairness of an algorithmic decision.
We measure the algorithm bias using randomized experiments, which enables the simultaneous measurement of disparate treatment, disparate impact, and economic value.
We also develop an explainable machine learning model which accurately interprets and distills the beliefs of a blackbox algorithm.
arXiv Detail & Related papers (2023-09-04T19:45:18Z) - Towards Diverse Evaluation of Class Incremental Learning: A Representation Learning Perspective [67.45111837188685]
Class incremental learning (CIL) algorithms aim to continually learn new object classes from incrementally arriving data.
We experimentally analyze neural network models trained by CIL algorithms using various evaluation protocols in representation learning.
arXiv Detail & Related papers (2022-06-16T11:44:11Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - FAIRLEARN:Configurable and Interpretable Algorithmic Fairness [1.2183405753834557]
There is a need to mitigate any bias arising from either training samples or implicit assumptions made about the data samples.
Many approaches have been proposed to make learning algorithms fair by detecting and mitigating bias in different stages of optimization.
We propose the FAIRLEARN procedure that produces a fair algorithm by incorporating user constraints into the optimization procedure.
arXiv Detail & Related papers (2021-11-17T03:07:18Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
dataset bias is one of the prevailing causes of unfairness in machine learning.
We study whether models trained with uncertainty-based ALs are fairer in their decisions with respect to a protected class.
We also explore the interaction of algorithmic fairness methods such as gradient reversal (GRAD) and BALD.
arXiv Detail & Related papers (2021-04-14T14:20:22Z) - Individually Fair Gradient Boosting [86.1984206610373]
We consider the task of enforcing individual fairness in gradient boosting.
We show that our algorithm converges globally and generalizes.
We also demonstrate the efficacy of our algorithm on three ML problems susceptible to algorithmic bias.
arXiv Detail & Related papers (2021-03-31T03:06:57Z) - Metrics and methods for a systematic comparison of fairness-aware
machine learning algorithms [0.0]
This study is the most comprehensive of its kind.
It considers fairness, predictive-performance, calibration quality, and speed of 28 different modelling pipelines.
We also found that fairness-aware algorithms can induce fairness without material drops in predictive power.
arXiv Detail & Related papers (2020-10-08T13:58:09Z) - FAE: A Fairness-Aware Ensemble Framework [18.993049769711114]
FAE (Fairness-Aware Ensemble) framework combines fairness-related interventions at both pre- and postprocessing steps of the data analysis process.
In the preprocessing step, we tackle the problems of under-representation of the protected group and of class-imbalance.
In the post-processing step, we tackle the problem of class overlapping by shifting the decision boundary in the direction of fairness.
arXiv Detail & Related papers (2020-02-03T13:05:18Z) - Algorithmic Fairness [11.650381752104298]
It is crucial to develop AI algorithms that are not only accurate but also objective and fair.
Recent studies have shown that algorithmic decision-making may be inherently prone to unfairness.
arXiv Detail & Related papers (2020-01-21T19:01:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.